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Let a high-dimensional random vector X⃗ be represented as a sum of two components — a
signal S⃗ that belongs to some low-dimensional linear subspace S, and a noise component N⃗ .
This paper presents a new approach for estimating the subspace S based on the ideas of the
Non-Gaussian Component Analysis. Our approach avoids the technical difficulties that usually
appear in similar methods — it requires neither the estimation of the inverse covariance matrix
of X⃗ nor the estimation of the covariance matrix of N⃗ .
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Introduction
Assume that a high-dimensional random variable X⃗ ∈ Rd be represented as a sum of two

independent components — a low-dimensional signal (which one can imagine as “a useful part”
or “an information”) and a noise component with a Normal distribution. More precisely,

X⃗ = S⃗ + N⃗ , (1)

where S⃗ belongs to some low-dimensional linear subspace S, N⃗ is a normal vector with zero
mean and unknown covariance matrix, and S⃗ is independent of N⃗ . This structural assumption
follows the observation that in applications the “useful part” is non-Gaussian while the “rest
part” can be interpreted as a high-dimensional noise. For the sake of simplicity, we assume
that the expectation of X⃗ vanishes and the covariance matrix of X⃗, which is denoted by Σ, is
non-degenerated.

Denote the dimension of S⃗ by m. In this paper, m is fixed such that the representation
(1) is unique; the existence of such m is proved under some mild assumptions by Theis and
Kawanabe (2007). If m = 0, then our model reduces to the pure-parametric case; if m = d,
then the model is pure-nonparametric. Obviously, the representation (1) links pure Gaussian
(PCA) and pure non-Gaussian (ICA) modelling.

The aim of this paper is to estimate vectors from the subspace S, which we call the signal
subspace. A very related task, estimation of so called the non-Gaussian subspace I (the definition
will be given below) has been extensively studied in the literature. The original method known
as Non-Gaussian Component Analysis (NGCA) was proposed by Blanchard et al. (2006), and
later improved by Dalalyan et al. (2007), Kawanabe et al. (2007), Diederichs et al. (2010).

In almost all papers mentioned above, the problem of estimation of the vectors from S is
not considered in details; natural estimators require the estimation of the covariance matrix of
the noise. Moreover, practical usage meets another technical problem — the estimation of the
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inverse covariance matrix of X⃗. Each of these tasks is an obstacle in real-world applications of
the method. In this article, we propose a new approach, which avoids the mentioned problems.

The paper is organized as follows. In the second section, we formulate and discuss the
mathematical statements that yield a method for estimating the vectors from S. We start
with Theorem 1, which implies a special representation for the density function of X⃗. This
representation is new and plays a central role in the validation of the method. The theoretical
base of our approach is given in Theorem 2 and Lemma 3. Section 3 contains the full description
of the algortihm. Next, we discuss different representations for the density function and point
out the advantages of our formulation. The last section states what has been done before and
what is the contribution of the present paper. All proofs are collected in Appendix A; some
additional information about the NGCA methodology is given in Appendix B.

Theoretical base for the estimation of the signal subspace
This section presents the theoretical results that are needed for our purposes. The proofs

are collected in Appendix A.
The first theorem gives the semiparametric density representation for the random vector

X⃗. Such facts are known in the literature (see e.g. Blanchard et al., 2006) but the formulation
given below principally differs from the previous versions, see the next section for discussion.
Theorem 1. Let the structural assumption (1) be fulfilled. Then the density function of the
random vector X⃗ can be represented as follows:

p(x⃗) = g(Tx⃗) pN(x⃗,Σ), (2)

where
— T : Rd → Σ−1/2S is the linear transformation defined as the projection of the vector Σ−1/2x⃗

on the subspace Σ−1/2S, i.e.,

Tx⃗ := Pr Σ−1/2S{Σ−1/2x⃗}, (3)

— g : Σ−1/2S → R is defined by

g(⃗t ) =
q
(
t⃗
)

pN(⃗t, Im)
, (4)

and q(·) is the density function of the random variable TX⃗.

As it was mentioned in the introduction, our aim is to recover the subspace S. This can be
done thanks to the following theorem, which is a new result in the context of the Non-Gaussian
Component Analysis.
Theorem 2. Let T be the linear transformation defined by (3). Then

S = Σ (KerT)⊥ . (5)

In Blanchard et al. (2006), a transformation T is considered instead of T:

T x⃗ := Pr Γ−1/2S{Γ−1/2x⃗}, (6)

where by Γ we denote the covariance matrix of the noise component. In the paper by Blanchard
et al., the subspace (Ker T )⊥ is called the non-Gaussian subspace and is in fact the main object
of interest. We would like to stress here that T ̸= T, and equalities like (5) are wrong for T .

One of the main results about the NGCA approach gives the practical method for estimating
vectors from (Ker T )⊥. Similar result can be formulated also for the subspace (KerT)⊥.
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Lemma 3. Assume that the structural assumption (1) is fulfilled. Then for any function
ψ ∈ C1(Rd,R) there exists a vector β ∈ (Ker T)⊥ such that

E
(
∇ψ(X⃗)

)
− β = Σ−1E

(
X⃗ψ(X⃗)

)
. (7)

Corollary 4. Let the structural assumption (1) be fulfilled and let a function ψ ∈ C1(Rd,R)

be such that E
(
X⃗ψ(X⃗)

)
= 0. Then

E
(
∇ψ(X⃗)

)
∈ (Ker T)⊥ .

Theorem 2 and Lemma 3 yield a method for estimating vectors from the subspace S that
is described in the next section.

Algorithm for the estimation of the signal subspace
The first step is to estimate vectors from the subspace (Ker T)⊥ using Lemma 3.

Theoretically, the best way for the estimation is to find a set of functions {ψ} such that
E
(
X⃗ψ(X⃗)

)
= 0 for any element of this set, and to estimate the vectors from (Ker T)⊥ by

E
(
∇ψ(X⃗)

)
, see Corollary 4. In practice, such set {ψ} is unknown; usually it is more realistic

to consider some ψ such that E
(
X⃗ψ(X⃗)

)
is close to zero (but not exactly zero). In this

case, according to Lemma 3, the vector E
(
∇ψ(X⃗)

)
is close to some vector from the subspace

(Ker T)⊥.
We suggest to use the convex projection method, see Diederichs (2007) and Diederichs et

al. (2010). Since the description of this method requires at least one page, and its discussion is
not an objective of the article (and merits a separate publication), we put the explanation in
the appendix of the paper.

The second step. Denote the vectors obtained on the first step by β⃗k, k = 1..K. Now one
can use Theorem 2 and estimate vectors from the signal subspace by γ⃗k := Σ̂β⃗k, where Σ̂ is an
estimator of the matrix Σ,

Σ̂ := n−1

n∑
i=1

X⃗iX⃗
⊤

i .

The third step. The next problem is how to utilize the set {γ⃗k}Kk=1 for recovering the target
space. According to the method SAMM (structural adaptation via maximum minimization
method, see Dalalyan et al. (2007)), the “optimal” projector on the target subspace is defined
as follows:

Π̂NG := arg min{
Π:Π∗=Π

04Π4I

tr(Π)6m

} max
16k6K

γ⃗k
⊤(I − Π)γ⃗k. (8)

Remark 1. Note that the inverse covariance matrix is included in the formula (7) but our
approach doesn’t require the estimation of it. In fact, Lemma 3 is used only for theoretical
justification of the first step; practical method described above needs neither the estimation
of Σ−1 nor the estimation of Γ. On the second step, one uses only the representation (5),
which also allows to avoid the estimation of the inverse covariance matrix. The method SAMM
doesn’t require the estimation of the inverse covariance matrix and therefore can be used in
this algorithm.
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Representations for the density function of X⃗
The proofs of Theorem 2 and Lemma 3 are based on the special representation of the

density function of X⃗ that is given in Theorem 1. Similar representations have been studied
extensively in previous papers about NGCA. Such facts are usually stated in the following form:
if structural assumption (1) is fulfilled, then the density function of a random vector X⃗ ∈ Rd

can be represented as
p(x⃗) = g(T x⃗)φA(x⃗), (9)

where T : Rd → E is a linear transformation (E — some subspace with dimE = m), g : E → R —
a function, and A — a d× d symmetric positive matrix. In most papers, formula (9) is proven
only for A = Γ, see e.g. Kawanabe et al. (2007). Another way is to start from the representation
(9) without giving the motivation in the spirit of (1), see e.g. Blanchard et al. (2006). In this
respect, the result of Theorem 1 can be briefly explained as follows: for any X⃗ in the form (1),
one can find a function g such that (9) is fulfilled with T = T and A = Σ.

The existence of a representation in the form (9) can be easily shown in the following way.
Note that the model (1) is equivalent to a linear mixing model

X⃗ = ASX⃗S + ANX⃗N , (10)

where X⃗S ∈ Rm, X⃗N ∈ Rd−m are two random variables; X⃗N is a normal vector with unknown
covariance matrix; X⃗S is independent of X⃗N ; AS ∈ Matr(d × m), AN ∈ Matr(d × (d − m))
are two deterministic matrices such that columns of these matrices are independent. In this
formulation, the signal subspace is spanned by the columns of matrix AS.

Therefore the vectorX is a linear transformation of the vector X⃗ ′ := (X⃗S; X⃗N) (this notation
means that X⃗ ′ is a concatenation of X⃗S and X⃗N). This yields that p(x) ∝ g(X⃗S)φ(X⃗N), where
by g we denote the density function of the m-dimensional non-Gaussian component, and by φ —
the density function of the normally distributed random variable X⃗N . Thus, the representation
(9) is proven with some A and T .

As it was mentioned before, the precise formulation for the density of X⃗ that is needed for
our purposes is given in Theorem 1.

Conclusion
The NGCA method has been already widely discussed in the literature (see the

introduction). A substantial difference between the previous papers and this article lies in
the object of estimation: Blanchard et al, (2006), Diederichs et al. (2010) and other authors
concentrate on the estimation of the subspace T (defined by (6)), and we aim to estimate the
subspace T (see (3)). The estimation of T also relies on Lemma 3, and this lemma can be
found in previous articles. However, the second step is quite new for the NGCA approach. Our
methodology (estimation of the signal subspace without estimation of the inverse covariance
matrix) has not been previously discussed in the literature. The mathematical base for the
second step is given in Theorem 2, which is also new.

Our method relies on the special representation for the density function, which is discussed
in Section 4. I would like to stress here that the representation (2) with the operator T in the
form (3) is also a new technical result.
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Appendix A. Proofs of the main theoretical facts
Proof of Theorem 1
1. Denote

X⃗ ′ := Σ−1/2X⃗ = Σ−1/2S⃗ + Σ−1/2N⃗ , (11)

and introduce the notation S⃗ ′ = Σ−1/2S⃗, N⃗ ′ = Σ−1/2N⃗ .
The first component in (11) belongs to the subspace S ′ := Σ−1/2S. Denote by N′ the subspace
that is orthogonal to S ′; one can show N′ coincides with the subspace Σ1/2S⊥ (Sugiyama et al,
2008).
Vector N⃗ ′ can be decomposed into the sum of two vectors, N⃗ ′ = N⃗S′ + N⃗N′ , where N⃗S′ ∈
S ′, N⃗N′ ∈ N′. This yields that X⃗ is represented by

X⃗ ′ = S⃗ ′ + N⃗S′︸ ︷︷ ︸
∈ S ′

+ N⃗N′︸︷︷︸
∈ N′

.

Let us choose the basis of Rd such that the first m vectors v⃗1, ..., v⃗m belong to the subspace S ′,
while v⃗m+1, ..., v⃗d belong to N′. Decompose the vectors Z⃗ ′ := S⃗ ′ + N⃗S′ and N⃗N′ into the basis
v⃗1, .., v⃗d:

Z⃗ ′ =
m∑
i=1

ziv⃗i, N⃗N′ =
d∑

i=m+1

niv⃗i, (12)

where all coefficients zi and ni are random. Since X⃗ ′ is a standardized vector,

Id = E
[
X⃗ ′X⃗

′⊤
]

=
m∑

i,j=1

E [zizj] v⃗iv⃗
⊤
j +

m∑
i=1

d∑
j=m+1

E [zinj] v⃗iv⃗
⊤
j +

d∑
i,j=m+1

E [ninj] v⃗iv⃗
⊤
j ,

and we conclude that the vectors Z⃗ ′ and N⃗N′ are also standardized.
2. Denote by F ′(x⃗′) and p′(x⃗′) the distribution function and the density function of the

vector X⃗ ′,
F ′(x⃗′) = P

{
X⃗ ′ 6 x⃗′

}
= P

{
Z⃗ ′ + N⃗N′ 6 x⃗′

}
. (13)

Note that the vectors S⃗ ′ = Σ−1/2S⃗ and N⃗ ′ = Σ−1/2N⃗ are independent as the functions of
the independent vectors S⃗ and N⃗ . Therefore, the vectors S⃗ ′, N⃗N′ and N⃗S′ are mutually (not
just pairwise) independent. Finally, Z⃗ ′ and N⃗N′ are independent as functions of independent
variables.
Next, the choice of the basis allows to split the inequality

Z⃗ ′ + N⃗N′ 6 x⃗′ =
d∑

i=1

xiv⃗i

into two

Z⃗ ′ 6
m∑
i=1

xiv⃗i =: x⃗S′ , N⃗N′ 6
d∑

i=m+1

xiv⃗i =: x⃗N′ ,

and to represent the function F ′ as

F ′(x⃗′) = P
{
Z⃗ ′ + N⃗N′ 6 x⃗′

}
= P

{
Z⃗ ′ 6 x⃗S′ , N⃗N′ 6 x⃗N′

}
= P

{
Z⃗ ′ 6 x⃗S′

}
P
{
N⃗N′ 6 x⃗N′

}
. (14)
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Taking the derivatives in (14), we arrive at the representation for the density function of X⃗ ′.

p′(x⃗′) = q(x⃗S′) · pN(x⃗N′ , Id−m) =
q(x⃗S′)

pN(x⃗S′ , Im)
· pN(x⃗′, Id) =

q(Pr S′ x⃗′)

pN(Pr S′ x⃗′, Im)
· pN(x⃗′, Id),

where by q(·) we denote the density function of the random vector Z⃗ ′ = S⃗ ′ + N⃗S′ = Pr S′{X⃗ ′}.
3. We complete the proof by deriving representation for the density function of X⃗ =

= Σ1/2X⃗ ′ from the density function of X⃗ ′. According to the well-known formula for the density
transformation,

p(x⃗) = det
(
Σ−1/2

)
p′(Σ−1/2x⃗) = det

(
Σ−1/2

)
·

q
(
Pr S′

{
Σ−1/2x⃗

})
pN
(
Pr S′ {Σ−1/2x⃗} , Im

) · pN(Σ−1/2x⃗, Id).

The remark pN(Σ−1/2x⃗, Id) = det
(
Σ1/2

)
pN(x⃗,Σ) concludes the proof.

Proof of Lemma 3. We obtain a more general result:
Lemma 5. Assume that the density function of a random vector X⃗ ∈ Rd be represented in the
form (9), where T : Rd → E is any linear transformation (E — any linear space), g : E → R —
any function, and A — any d × d symmetric positive-defined matrix. Then for any function
ψ ∈ C(1)(Rd,R), the vector

β⃗ := E
[
∇ψ(X⃗)

]
− A−1E

[
X⃗ψ(X⃗)

]
(15)

belongs to the subspace (Ker T )⊥.

Proof. Since for any function ψ and for any u ∈ Rd,∫
ψ(x+ u)p(x)dx =

∫
ψ(x)p(x− u)dx,

we conclude that under some mild assumptions,

E
[
∇ψ(X⃗)

]
=

∫
∇ [ψ(x⃗)] p(x⃗)dx = −

∫
ψ(x⃗)∇ [p(x⃗)] dx⃗. (16)

The gradient of the density function can be represented by the sum of two components:

∇p(x⃗) = ∇ [log p(x⃗)] p(x⃗)

= ∇ [log g(T x⃗)] p(x⃗) + ∇
[
log pN(x⃗, A)

]
p(x⃗). (17)

We have

∇ [log g(T x⃗)] p(x⃗) =
∇g(T x⃗)

g(T x⃗)
p(x⃗) = ∇ [g(T x⃗)] pN(x⃗, A)

= pN(x⃗, A) · T ⊤ ∇y⃗ [g(y⃗)] |y⃗=T x⃗,

∇
[
log pN(x⃗, A)

]
p(x⃗) = −A−1x⃗p(x⃗).

Denote
Λ⃗ = −

∫
ψ(x⃗) · pN(x⃗, A) · ∇y⃗ [g(y⃗)] |y⃗=T x⃗ dx⃗.
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Then (15) follows with β⃗ := T ⊤ Λ⃗ ∈ (Ker T )⊥ because (16) together with (17) yield

E
[
∇ψ(X⃗)

]
= T ⊤ Λ⃗ + A−1E

[
X⃗ψ(X⃗)

]
.

Proof of Theorem 2
The proof is straightforward:

KerT =
{
x⃗ : Σ−1/2x⃗ ⊥ Σ−1/2S

}
=
{
x⃗ : ∃s⃗ ∈ S | x⃗⊤

(
Σ−1/2

)⊤
Σ−1/2s⃗ = 0

}
=
{
x⃗ : ∃s⃗ ∈ S | x⃗⊤ Σ−1s⃗ = 0

}
=
{
x⃗ : x⃗ ⊥ Σ−1S

}
.

Appendix B. Choice of ψ by the convex projection method
The appendix briefly explains the method of estimation of the functions {ψ} called the

convex projection method (Diederichs (2007) and Diederichs et al. (2010)). The method gives
an algorithm for finding one function ψ; one can repeat the algorithm with different parameters
and receive the whole set {ψ}.

The core of the method is the choice of the function ψ in the following form:

ψ(x⃗) :=
J∑

j=1

cjψj(x⃗); ψj(x⃗) = f(ω⃗T
j x⃗)e−||x⃗||2/2, (18)

where f can be any smooth function; for the numerical simulations, Diederichs uses f(z) =
= f1(z) or f(z) = (1 + z2)−1ez; "directions"{ωj, j = 1..J} are preliminary estimated through
the Monte-Carlo sampling from the uniform distribution on the sphere; c⃗ = {cj, j = 1..J} is a
vector from the L1 - unit ball, which is the object of estimation.

Corollary 4 yields that for any function ψ ∈ C(1)(Rd,R) such that E
[
X⃗ψ(X⃗)

]
= 0, the vector

E
[
∇ψ(X⃗)

]
belongs to (Ker T)⊥ . Changing the mathematical expectations in this statement

by their empirical counterparts, we conclude that if the vector c⃗ is chosen such that

γ( c⃗ ) :=
1

JN

J∑
j=1

cj

( N∑
i=1

ψj(X⃗i)X⃗i

)
≈ 0⃗, (19)

then

β⃗( c⃗ ) :=
1

JN

J∑
j=1

cj

( N∑
i=1

∇ψj(X⃗i)

)
(20)

can be considered as the estimate of a vector from (Ker T)⊥. Diederichs (2007) proposes to
estimate the coefficient vector c⃗ by solving the optimization problem

(ĉ1, ĉ2, ..., ĉJ) := arg minc⃗

{
∥⃗ξ − β⃗( c⃗ )∥2

∣∣∣ γ( c⃗ ) = 0⃗, ∥ c⃗ ∥1 6 1

}
, (21)

where ξ⃗ is a unit vector, which we call a probe vector. Afterwards the estimate of the function
ψ is set to ψ(x⃗) :=

∑J
j=1 ĉjψj(x⃗).



See the article by Diederichs et al. (2007) for examples.
Another popular method for finding ψ was introduced by Blanchard et al. (2006). We don’t

present that method here because it uses the estimator of the inverse covariance matrix Σ−1

and contradicts the philosophy of this paper.
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