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Computable combinatorial data dependent on generalization bounds are studied. This approach
is based on simplified probabilistic assumptions: it is assumed that the instance space is finite,
the labeling function is deterministic, and the loss function is binary. A random walk across
a set of linear classifiers with low error rate is used to compute the bound efficiently. The
experimental evidence to confirm that this approach leads to practical overfitting bounds in
classification tasks is provided.
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Âû÷èñëèìûå êîìáèíàòîðíûå îöåíêè âåðîÿòíîñòè
ïåðåîáó÷åíèÿ∗

Âîðîíöîâ Ê.Â.1, Ôðåé À.È.2, Ñîêîëîâ Å.À.3

1Ìîñêâà, Âû÷èñëèòåëüíûé Öåíòð ÐÀÍ; 2Ìîñêîâñêèé Ôèçèêî-Òåõíè÷åñêèé Èíñòèòóò;
3Ìîñêîâñêèé Ãîñóäàðñòâåííûé Óíèâåðñèòåò

Â äàííîé ñòàòüå èçó÷àþòñÿ êîìáèíàòîðíûå îöåíêè îáîáùàþùåé ñïîñîáíîñòè, âû÷èñëèìûå
ïî îáó÷àþùåé âûáîðêå. Ýòè îöåíêè îñíîâàíû íà óïðîùåííîé âåðîÿòíîñòíîé ìîäåëè, â
êîòîðîé ðàññìàòðèâàåòñÿ ëèøü êîíå÷íàÿ ãåíåðàëüíàÿ ñîâîêóïíîñòü îáúåêòîâ è áèíàðíàÿ
ôóíêöèÿ ïîòåðü. Äëÿ ëèíåéíûõ êëàññèôèêàòîðîâ ïðåäëàãàåòñÿ íîâûé ýôôåêòèâíûé ìåòîä
âû÷èñëåíèÿ êîìáèíàòîðíûõ îöåíîê, èñïîëüçóþùèé ñëó÷àéíûå áëóæäàíèé ïî ìíîæåñòâó
êëàññèôèêàòîðîâ ñ íèçêèì ÷èñëîì îøèáîê. Â çàêëþ÷åíèè ïðèâîäèòñÿ ýêñïåðèìåíòàëüíîå
îáîñíîâàíèå ïðåäëàãàåìîãî ìåòîäà.

Êëþ÷åâûå ñëîâà: âåðîÿòíîñòü ïåðåîáó÷åíèÿ, ýìïèðè÷åñêèé ðèñê, îöåíêà âåðîÿòíîñòè
ïåðåîáó÷åíèÿ, ñõîäñòâî àëãîðèòìîâ, ñêîëüçÿùèé êîíòðîëü.

1 Introduction
Accurate bounding of overfitting is an active area of research starting with the pioneer work [1].
A widely adapted approach is based on a probabilistic framework where an instance space
X (usually, of an infinite cardinality) is equipped with an unknown probability distribution.
Consider an independent and identically distributed (i.i.d.) sample X = {x1, . . . , x`} from
X, a set A of all feasible classifiers (for example, all linear classifiers in the original feature
space), and a learning algorithm µ which selects a specific classifier a = µX from the set A
based on the observed sample X. The goal of generalization bounds is to predict an average
performance of the classifier a on the whole X. The most generalization bounds are derived from
various concentration inequalities [2] and take into account the dimensionality of A (such as
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Vapnik–Chervonenko (VC) dimension, fat-shattering dimension, etc.), properties of the learning
algorithm µ (such as the local properties of empirical risk minimization [3]), and information
drawn from the observed sample X (such as the normalized margin in margin-based bounds [4,
5]). Generalization bounds can be useful in structural risk minimization and in model selection,
and, hope, some time in future they could replace costly cross-validation procedures.

Despite recent significant improvements [6], there is still a big gap between theory and
practice. Even the latest PAC (Probably approximately correct) Bayesian bounds [7] vastly
overestimate overfitting, especially when the cardinality of an instance space is small. Another
difficulty is that intermediate bounds are usually expressed in terms of unobservable quantities
and that makes impossible to measure and compare the factors of overestimation. Finally, many
papers lack experimental evaluation. As a result, from practical perspective, the existing bounds
are not well suitable for prediction and control of overfitting.

The present authors believe that a simplified probabilistic framework is quite sufficient for
obtaining practical overfitting bounds. In this paper, it is assumed that the instance space X
is finite, and for each object x ∈ X and classifier a ∈ A, there exists a deterministic binary
loss I(a, x) ∈ {0, 1} associated with classification of x as a(x). Let assume that all partitions
of the set X into an observed training sample X of size ` and a hidden test sample X̄ = X \X
of size k can occur with equal probability. Then, the overfitting probability can be defined by
a purely combinatorial formula [8]:

Qε(µ,X) = P
[
ν(µ(X), X̄)− ν(µ(X), X) > ε

]
(1)

where µ is the learning algorithm; ν(a,X) is the error rate of a classifier a ∈ A on a sample X;
and the square brackets denote a transformation of a logical value into a numerical one: [true] =
= 1, [false] = 0. A definition similar to (1) first appears in [9] for a specific case of k = 1 and then
in [10] (this time for an arbitrary k, but with significant notation differences). This definition
closely resembles the procedure of complete cross-validation, which is known to provide sharp
estimates of performance of a learning algorithm on data yet unknown during learning phase.

Definition (1) is not guarantied to be an upper bound for new objects beyond X (not even
up to some probability). In this paper, the authors do not discuss how to mitigate this problem.
It is just assumed that the lack of guaranties is acceptable in the same way as people normally
accept results of a fare 10-fold cross-validation in experimental evaluations.

Within (1), an empirical risk minimization µX = arg min
a∈A

ν(a,X) is used as a learning

algorithm. This requires an explicit representation of the set of classifiers A, which might be of
enormous cardinality (109 and higher) in real applications. In this paper, a special case of linear
classifiers is studied and an efficient algorithm that samples a small set of classifiers (up to 104)
to recover accurate overfitting bound (1) is presented. Also note that a direct computation
of (1) is intractable because it involves a sum across all C`

`+k subsets X ⊂ X. For empirical
risk minimization, efficient upper bounds on (1), obtained in [11] are used, and compared with
Monte-Carlo estimate of (1).

Overfitting of logistic regression in experiments is studied on 15 datasets from the UCI
repository [12]. The results confirm that the present approach provides sharp estimates of
overfitting, which correlate with the actual overfitting, recovers a correct shape of the learning
curves, and outperform the state-of-the-art of PAC-Bayesian bounds.

The rest of this paper is organized as follows. Section 2 contains a brief review of combi-
natorial bounds on (1). Section 3 describes the algorithm of sampling a representative set of
linear classifiers. Section 4 provides experimental results and Section 5 concludes the paper.
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2 Background
Let X = {x1, . . . , xL} be a finite instance space and A be a set of classifiers. By I : A ×
× X → {0, 1} denote a binary loss function such that I(a, x) = 1 if a classifier a produces
an error on an object x. For further consideratio, there is no need to specify what is “classifier.”
Particularly, a regression function can also be a “classifier” if a binary loss function is used.

The binary vector (ai) ≡
(
I(a, xi)

)
L
i=1 of size L is called an error vector of the classifier a.

Assume that all classifiers from A have pairwise different error vectors. The number of errors
of a classifier a on a sample X ⊆ X is defined as n(a,X) =

∑
x∈X I(a,X). The error rate is

defined as ν(a,X) = (1/|X|)n(a,X). The subset Am = {a ∈ A : n(a,X) = m} is called m-layer
of classifiers.

A learning algorithm is a mapping µ : 2X → A that takes a training sample X ⊆ X and gives
a classifier µX ∈ A. The learning algorithm µ is called empirical risk minimization (ERM)
whenever for all X ∈ X it satisfies µX ∈ A(X) where

A(X) ≡ Arg min
a∈A

n(a,X).

The choice of a classifier that minimizes empirical risk may be ambiguous because of discreteness
of the function n(a,X). An ERM algorithm µ is said to be pessimistic if

µX ∈ Arg max
a∈A(X)

n(a, X̄).

The pessimistic ERM cannot be implemented in practice because it looks into a hidden part
of data X̄ unknown at the learning stage. Nevertheless, pessimistic ERM is a very useful
theoretical concept because it gives tight upper bounds of overfitting probability for any ERM.

Permutational probability. By [X]` denote a set of all C`
L = L!/(`!(L− `)!) samples

X ⊂ X of size `. Define a probability operator P and an expectation operator E for a predicate
ϕ : [X]` → {0, 1} and a real function ψ : [X]` → R:

Pϕ = C`
L

−1
∑
X∈[X]`

ϕ(X); Eψ = C`
L

−1
∑
X∈[X]`

ψ(X).

If the discrepancy δ(a,X) = ν(a, X̄)− ν(a,X) is greater than a given nonnegative thresh-
old ε, then the classifier a = µX is said to be overfitted. The goal is to estimate the probability
of overfitting :

Qε(µ,X) = P
[
δ(µ,X) > ε

]
.

where δ(µ,X) = δ(µX,X) for short.
The inversion of an upper bound Qε 6 η(ε) is an inequality ν(µX, X̄) − ν(µX,X) 6 ε(η)

that holds with probability at least 1−η where ε(η) is the inverse function for η(ε). The median
of an upper bound Qε 6 η(ε) is the inversion at η = 1/2.

Average train and test errors are defined as follows:

ν`(µ,X) = Eν(µX,X); (2)

ν̄`(µ,X) = Eν(µX, X̄). (3)

Hypergeometric distribution. For a classifier a such that m = n(a,X), the probability
to have s errors on a sample X is given by a hypergeometric function:

P[n(a,X) = s] = Cs
mC`−s

L−mC
`
L

−1 ≡ h`, mL (s)
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where argument s runs from s0 = max{0,m− k} to s1 = min{m, `}, and parameter m takes
values 0, . . . , L. It is assumed that Cs

m = h`, mL (s) = 0 for all other integers m, s.
Define the hypergeometric cumulative distribution function (left tail of the distribution):

H`, m
L (z) =

bzc∑
s=s0

h`, mL (s) .

Consider a set A = {a} containing a fixed classifier so that µX = a for any X. Then the
probability of overfitting Qε transforms into the probability of large deviation between error
rates on two samples X and X̄. If the number of errors n(a,X) is known, then an exact Qε

bound can be obtained.

Theorem 1 (FC-bound [11]). For a fixed classifier (FC) a such that m = n(a,X), any set X,
and any ε ∈ [0, 1], the probability of overfitting is given by the left tail of the hypergeometric
distribution:

Qε(a,X) = H`, m
L

(
`
L

(m− εk)
)
. (4)

The hypergeometric distribution plays a fundamental role in combinatorial bounds. To-
gether with union bound, Eq. (4) provides an upper estimate of Qε(µ,X) that holds for any
learning algorithm µ.

Theorem 2 (VC-type bound [11]). For any set X, any learning algorithm µ, and any
ε ∈ [0, 1], the probability of overfitting is bounded by the sum of FC-bounds over the set A:

Qε(µ,X) 6 P
[
max
a∈A

δ(a,X) > ε
]
6
∑
a∈A

H`, m
L

(
`
L

(m− εk)
)
, m = n(a,X). (5)

There are two reasons for looseness of (5). First, most classifiers in A are bad and should have
vanishing probability to be obtained as a result of learning. Nevertheless, the uniform deviation
bound ignores the learning algorithm µ. Second, similar classifiers share their contribution,
which is ignored by union bound. Better bound should account for actual learning algorithm
and similarity between classifiers.

Splitting and connectivity bounds. Define an order relation on classifiers a 6 b as a
natural order over their error vectors: ai 6 bi for all i = 1, . . . , L. Define a metric on classifiers
as a Hamming distance between error vectors: ρ(a, b) =

∑L
i=1 |ai − bi|.

Theorem 3 (Splitting and connectivity (SC) bound [11]). If learning algorithm µ is
pessimistic ERM, then for any ε ∈ [0, 1], the probability of overfitting is bounded by the
weighted sum of FC-bounds over the set A:

Qε(µ,X) 6
∑
a∈A

C`−q
L−q−rC

`
L

−1
H`−q, m−r
L−q−r

(
`
L

(m− εk)
)
. (6)

Here, m = n(a,X); q = q(a) is the upper connectivity; and r = r(a) is the inferiority of
a classifier a:

q(a) = #{b ∈ A : a < b and ρ(a, b) = 1};
r(a) = #{x ∈ X : I(a, x) = 1 and ∃ b ∈ A such that b 6 a and I(x, b) = 0}

where for any set S notation #S stands for cardinality of S.
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Splitting and connectivity bound (6) turns into VC-type bound (5) when all q(a) and r(a) are
set to zeros.

The weight Pa = C`−q
L−q−rC`

L
−1

in sum (6) is an upper bound on the probability P[µX = a]
to get a given classifier a as a result of learning. This quantity decreases exponentially as the
connectivity q(a) or the inferiority r(a) increase. This implies that approximate calculation of
Qε(µ,X) requires knowledge not about the full set A, but only about few bottom layers of A.
This fact motivates an algorithm presented in the next section.

3 Sampling Linear Classifiers
One has to deal with the set of all classifiers A to calculate bounds (5), (6), or to estimate

Qε(µ,X) directly from definition (1). In this section, an efficient algorithm which samples a
small set of classifiers (about 104) sufficient to recover accurate overfitting bound is described.

Consider binary classification problem with labels yi ∈ {−1,+1}, i = 1, . . . , L, assigned
to objects xi ∈ X ⊂ Rd, respectively. Consider a set of unbiased linear classifiers a(x;w) =
= sign〈w, x〉 where w ∈ Rd is a real vector of weights. A pair of classifiers (w1, w2) is called neigh-
bors if their classification differs only by one object: x ∈ X such that sign(〈w1, x〉) sign(〈w2, x〉) =
= −1.

The immediate goal is to find all or some of neighbors of a given classifier w0. Then, this
procedure will be used to organize random walk on the graph G = (A,E) where vertices
correspond to classifiers in A and edges connect neighbor classifiers.

Finding neighbor classifiers along specific direction. Dual transformation D
maps a point x ∈ Rd into hyperplane D(x) = {w ∈ Rd : 〈w, x〉 = 0} and a hyperplane
h = {x ∈ Rd : 〈w, x〉 = 0} into point D(h) = w. Applying dual transformation D to finite set
of points X ⊂ Rd produces a set of hyperplanes H ≡ {D(xi)}Li=1. Each hyperplane hi ∈ H di-
vides Rd into two half-spaces:

h+
i = {w ∈ Rd : sign〈w, xi〉 = yi};
h−i = {w ∈ Rd : sign〈w, xi〉 = −yi}.

These half-spaces h+
i and h−i correspond to linear classifiers giving correct and incorrect answer

on xi, respectively. So, to find all classifiers with given error vector I = (Ii)
L
i=1, Ii ∈ {+,−}

where “+” corresponds to correct answer and “−” corresponds to incorrect, let just find the
intersection of half-spaces

⋂L
i=1 h

Ii
i . This intersection contains all linear classifiers with error

vector I (and only them). So, a set of hyperplanes H dissects Rd into convex polytopes called
cells, and the partition itself is called an arrangement of hyperplanes [13]. It can be shown that
finding neighbors of classifier w0 ∈ Rd is equivalent to finding cells adjacent to the cell of w0 in
arrangement H.

In order to find a neighbor of the classifier w0, let select an arbitrary vector u ∈ Rd and
consider a parametric set of classifiers {w0 + tu : t > 0}. This set corresponds to a ray in the
space of classifiers which starts from w0 and goes along the direction of u. An intersection of
this ray with hyperplane hi ∈ H is defined by condition 〈w0 + tu, xi〉 = 0, e. g., for ti = −
−〈w0, xi〉/〈u, xi〉. Let t(1) and t(2) be the first and the second smallest positive values from {ti},
i = 1, . . . , L. Whenever t(1) 6= t(2), one can conclude that w′ = w0 + (t(1) + t(2))u/2 defines an
adjacent classifier along direction u.

Random walk on classifiers graph. Techniques of random walk [14, 15, 16] provide
common approach to sample vertices from huge graphs. They are based on stationary distri-
butions of Markov chains and have nice properties when the sample is large. The goal is to get
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Algorithm 1 Random walk on classifiers graph

Require: starting point w0; sample X ⊂ Rd; integer parameters N , m, n; float parameter p ∈ (0, 1];
Ensure: set of classifiers A with unique error vectors.
1: Initialize concurrent random walk: vi = w0, i = 1, . . . , N ;
2: Create set A := ∅;
3: while A.size() < n
4: for all i ∈ 1, . . . , N
5: Find neighbor v′i of vi along random direction u ∈ Rd;
6: if n(v′i,X) > n(vi,X) then
7: with probability (1− p) continue;
8: else if n(v′i,X) > n(w0,X) +m then
9: continue;

10: vi = v′i;
11: A.add(vi);
12: return A
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Fig. 1: Map of hamming distances between
classifiers (top chart) and error profile (bot-
tom chart) produced by a simple random walk

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000
260

270

280

290

Fig. 2: Map of hamming distances between
classifiers (top chart) and error profile (bot-
tom chart) produced by random walk where
a step to upper vertex is made with probabil-
ity 0.5

a small sample sufficient to estimate overfitting from (1), (5), or (6). In this paragraph, it will
be discussed how to organize such random walk on A based on procedure that finds a random
neighbor for w ∈ A.

The algorithm is given in listing 1. It is controlled by the desired number of classifiers n,
maximal number of layer m, the number of concurrent walks N , and the probability p of
transition towards classifier with higher number of errors. The computational complexity of
this algorithm is O(Ldn).
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To explain the necessity of the parameter p, the results of the simplest random walk with n =
= 2000 iterations are presented in Fig. 1. The bottom chart displays the number of errors
n(vi,X) as a function of step. The upper chart displays a color map of pairwise hamming
distances ρ(vi, vj) between sampled vertices vi and vj. As a starting point, a classifier learned
by logistic regression is used. It is natural to expect that it has relatively small number of errors
which drifts upwards along random walk. This effect is undesired, because classifiers with high
number of errors have too small chance to be selected by learning algorithm.

Figure 2 presents similar result for updated random walk where a step to upper vertex is
made with probability p = 0.5. This enforces random walk to stay within the lower layers of
the graph.

4 Experiment

The goal of the experiment on the benchmark datasets is twofold. First, it was checked whether
combinatorial functionals Qε(µ,X) (1) and ν̄`(µ,X) (3) together with algorithm 1 provide an
accurate estimates of the overfitting on the holdout testing sample. Second, direct Monte-
Carlo estimates of overfitting based on functional (1) were compared with VC-type bound
(5), SC-bound (6), and with recent PAC-Bayesian dimension dependent (DD) and dimension
independent (DI) margin bounds proposed in [7].

Table 1: Description of datasets

Dataset #Examples #Features Dataset #Examples #Features

Sonar 208 60 Statlog 2310 19
Glass 214 9 Wine 4898 11
Liver dis. 345 6 Waveform 5000 21
Ionosphere 351 34 Pageblocks 5473 10
Wdbc 569 30 Optdigits 5620 64
Australian 690 6 Pendigits 10992 16
Pima 768 8 Letter 20000 16
Faults 1941 27

Fifteen datasets from the UCI repository [12] have been used. If the dataset is a multiclass
problem, the data were manually grouped into two classes since the binary classification problem
has been studied. For preprocessing, objects with one or more missing features have been
eliminated and all features have been normalized into [0, 1] interval. A description of the datasets
is given in Table 1 with number of examples after elimination.

In all experiments, the original dataset X was splitted into a training sample XL and a
testing sample XK . The training sample XL is used to train a logistic regression and to calculate
overfitting bounds. Then, the predictions of the bounds were compared with the actual error
rate on XK .

In the first experiment, the learning curves of logistic regression, where L runs from 5% to
95% of the original dataset size with 5 percent steps were built. For each L, M = 100 splits
X = Xi

L ∪ Xi
K , i = 1, . . . ,M , were generated and used to get Monte-Carlo estimates of train

error rate νL(µLR,X) from (2) and test error rate ν̄L(µLR,X) from (3) for logistic regression
learning algorithm µLR:

ν̂L(µLR,X) =
1

M

M∑
i=1

ν(µLRXi
L,Xi

L), ˆ̄νL(µLR,X) =
1

M

M∑
i=1

ν(µLRXi
L,Xi

K).
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Fig. 3: Learning curves of logistic regression and ERM. The error ratio of logistic regression is
estimated by Monte-Carlo method on splits of the original dataset X = XL ∪ XK . The error
ratio of ERM is estimated on splits of the training set XL = X` ∪Xk

After that, for each training sample XL, the classifiers were used and an average ERM
errors were estimated: train error ν`(µ,XL) and test error ν̄`(µ,XL) where µ is ERM learning
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Table 2: Comparison between real overfitting and various overfitting bounds: TrainErr stands
for νL(µLR,X), TestErr for ν̄L(µLR,X), Overfit is their difference, δ`(µ) ≡ ν̄`(µ,XL)− ν`(µ,XL)

Monte-Carlo estimates Generalization bounds
Task TrainErr TestErr Overfit δ`(µ) VC SC PAC DI PAC DD
Sonar 0.000 0.271 0.271 0.095 0.185 0.119 1.287 1.287
Glass 0.046 0.075 0.029 0.078 0.211 0.140 1.126 0.738
Liver dis. 0.299 0.314 0.015 0.060 0.261 0.209 1.207 1.067
Ionosphere 0.049 0.125 0.077 0.052 0.150 0.112 1.219 1.153
Wdbc 0.001 0.056 0.055 0.032 0.071 0.043 1.174 0.705
Australian 0.122 0.136 0.013 0.030 0.137 0.110 1.146 0.678
Pima 0.220 0.227 0.007 0.028 0.159 0.127 0.971 0.749
Faults 0.198 0.210 0.012 0.010 0.108 0.087 1.110 1.061
Statlog 0.138 0.142 0.005 0.010 0.096 0.082 1.102 0.747
Wine 0.248 0.250 0.002 0.004 0.134 0.109 0.776 0.637
Waveform 0.103 0.105 0.002 0.004 0.099 0.079 0.561 0.354
Pageblocks 0.050 0.050 0.001 0.004 0.073 0.057 0.737 0.186
Optdigits 0.115 0.121 0.006 0.004 0.102 0.084 1.068 0.604
Pendigits 0.160 0.161 0.001 0.002 0.127 0.103 0.774 0.432
Letter 0.274 0.274 0.001 0.001 0.165 0.137 0.818 0.636

algorithm. To sample classifiers on XL, algorithm 1 was launched with parameters n = 8 192,
N = 64, m = 15, p = 0.8, and classifier µLRXL was used as a starting point. To estimate
ν`(µ,XL) and ν̄`(µ,XL), let again compute Monte-Carlo type estimates of definitions (2) and
(3) by randomly generating M ′ = 4 096 splits XL = Xj

` ∪X
j
k, j = 1, . . . ,M ′, at constant ratio

`
L

= 0.8:

ν̂`(µ,XL) =
1

M ′

M∑
j=1

ν(µXj
` , X

j
` ), ˆ̄ν`(µ,XL) =

1

M ′

M∑
j=1

ν(µXj
` , X

j
k).

These estimates are then averaged over all partitions X = Xi
L ∪ Xi

K .
The four values (the actual train and test errors of logistic regression νL(µLR,X) and

ν̄L(µLR,X), ERM train error ν`(µ,XL), and ERM test error ν̄`(µ,XL)) are charted as a functions
of a training sample size ratio (Fig. 3) sorted according to sizes of datasets, from the smallest
to the largest. Note that ERM test error might be either below or above actual test error rate
of logistic regression because µ and µLR are quite different learning algorithms. However, from
charts, one may conclude that ν̄`(µ,XL), estimated only based on XL provides reasonably good
estimate of actual test error rate ν̄L(µLR,X) and of the learning curve on test sample XK .

Now, let turn to comparison of different overfitting bounds. For each dataset, 5-fold cross
validation were used and the results were averaged over 20 runs (for a total 100 runs). As
before, training sample XL was used to learn logistic regression, run algorithm 1, and estimate
ν`(µ,XL) and ν̄`(µ,XL) based on 4 096 randomly generated splits XL = Xj

` ∪X
j
k. In addition,

XL was used to estimate overfitting ν̄`(µ,XL) − ν`(µ,XL) by medians of VC-type bound (5)
and SC-bound (6) and to calculate DD-margin and DI-margin bounds from [7]. The results are
presented in Table 2. Note that while all combinatorial bounds estimate overfitting, PAC DI
and PAC DD are the upper bounds on the test error.

The key observation is that δ`(µ) ≡ ν̄`(µ,XL)−ν`(µ,XL) is in the order of magnitude sharper
than any of the other bounds. It works well for all datasets except Sonar (which is the smallest
dataset in the selection described). Across combinatorial bounds, the SC-bound outperform VC-
type bound, but still vastly overestimates the target quantity δ`(µ). All combinatorial bounds
provide tighter estimates on overfitting and test error rate than PAC-Bayesian bounds.

Note that the VC-bound is estimated by a small subset of A obtained from a random
walk. This is a “localized” VC-bound. The usual VC-bound estimated from VC-dimension d of
a whole set A should be greater than 1 on all datasets.

5 Concluding Remarks
In this paper, new random walk technique is presented for efficient calculation of combina-

torial data-dependent generalization bounds. Although combinatorial bounds are obtained for



empirical risk minimization under binary loss, it is shown that they provide sharp overfitting
estimates for logistic regression. The bounds recover correct shape of the learning curves for
logistic regression, correlate well with the actual overfitting, and outperform both classical VC-
bound and recent state-of-the-art PAC-Bayesian bounds in experiments on 15 datasets from
the UCI repository.
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