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In modern theory of pattern recognition objects are often classified with regard to interre-
lations (data coherence, spatial and temporal cohesion, etc.) between them. Markov random
fields (MRFs) are most popular to model such objects. The interrelations between neighboring
objects are represented by an adjacency graph. In general, the inference in MRFs is NP-hard
when the adjacency graph contains cycles. The main idea of this work is to replace the graph
with cycles by a linear combination of a finite or countable set of acyclic (treelike) paramet-
ric Markov models, for which the problem of recognizing MRFs can be efficiently solved. We
propose a simplified cross-validation procedure to statistically evaluate the quality of solutions
and to adjust the parameters of the linear combination, in which the Markov ones are treated
as hyper-parameters.

Keywords: Markov random fields, Markov chain, graphical models, image processing, pat-
tern recognition.

OueHka napamMeTpuyecKnx aunKJANYeCKNXx MapKOBCKUX
Mogenen AN 3aBUCUMbIX OOBbEKTOB*
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B coBpemenHoil Teopun pacrosHaBaHusi 00pa30B 00BEKTHI YACTO KJIACCUPUIIUTPOBAHBI C yUe-
TOM B3aMMOCBsI3eil MeXK Ty HUMU. MapKoBCKMe CIyUIaiiHbIe OIS STBIISTFOTCST HANMOOJIee MOty Isip-
HBIMHU MOJIEJISIMUA TaKUX OObEKTOB. B3amMOCBsI3M MeXK/Ty COCETHUMU OObEKTAMU TIPEICTABIEHBI
rpadom coceacrBa. Kak mpapumito, muist rpadoB o0Iero Buga C OUKJIAMHU 33Ja4a pPaclo3Ha-
BaHUST MapKOBCKHUX CJIYUIalHBIX TMOJIell obsagaeT cBoiicTBamu 3aja4dn kKiaacca NP. B mannoi
paboTe TpeIyIaraeTcst 3aMEHUTD rpad ¢ MUKJIAMU JTUHEHHOW KOMOWHAIME! KOHETHOTO UJTH CIeT-
HOIO MHOYKECTBA AllUKIMIECKUX (JIPEBOBUJIHBIX) HAPAMETPUUECKUX MAPKOBCKUX MOJEJIEH, JIJsi
KOTOPBIX MpobJ/IeMa Paclo3HABAHUST MAPKOBCKUX CJIYUAWHBIX TOJIel MOXKET OBIT 3(D(hEKTUBHO
pertena. [Ipejaraercst ypoleHHas TPOIEeaypa CKOTb3AMIEr0 KOHTPOJIS IS CTATHCTUIECKO
OTIEHKHU KavdeCTBa PEIleHrs] U HaCTPONKY MapaMeTpoB JIMHEHHOT KOMOUHAIINH, I7le MAPKOBCKIE
mapaMeTpbl PacCMaTPUBAIOTCS KaK CTPYKTYPHBIE.

KimroueBbie cjioBa: Mapkosckue CAyuaiHbE NOAA, MAPKOBCKAA UEeNd, 2padureckue mode-
AU, 06pabomka u3obpasicenudi, pacno3Hasarue 06pPa3os.

Introduction

In classical pattern recognition problem objects are independently classified. However, in
the modern theory of pattern recognition and machine learning the set of objects is usually
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treated as an array of interrelated data. The interrelations between objects are represented by
an undirected adjacency graph G = (T, E), where T is the set of objects ¢t € T and E is the
set of edges (s,t) € FE connecting two neighboring objects s,t € T. The adjacency graph of the
linearly ordered array is a chain.

Hidden Markov models (HMMs) have proved to be very efficient for processing data in
the form of a chain. But for arbitrary adjacency graphs with cycles, e.g., 4-connected grid of
image pixels, finding the maximum of a posteriori probability (MAP) of a MRF is a NP-hard
problem [1]. The standard way for solution is to specify a posteriori distribution of the MRF
by clique potentials, and solve the problem in terms of Gibbs energy [1, 2|. Hereby, the MAP
estimation corresponds to minimizing of Gibbs energy over all cliques of the graph G.

In this work we use acyclic Markov models developed in [3, 4, 5], for which we directly
estimate the MAP solutions of MRFs. Instead of the graph with cycles, we use a finite or
countable set of acyclic graphs to combine corresponding acyclic Markov models proposed in
[5].

According to [3, 4, 5], a transition matrix @), which is a parameter of so-called one-sided
Markov model, was specified by a unique diagonal element ¢ only. Later, algorithms for adjusting
the diagonal element and weights of the finite set of acyclic models were developed in [6].

On the other hand, Markov parameters can be treated as hyper-parameters. However, ad-
justing them based on the full cross-validation scheme takes a very high time complexity.

In this work we propose also new algorithms for adjusting the diagonal element for a count-
able set of acyclic adjacency graphs and propose a simplified cross-validation scheme to adjust
Markov parameters as hyper-parameters with much lower time complexity while maintaining
a high quality of solutions.

Data array recognition problem

Let denote by T the array of objects ¢ € T'. The interrelations between objects are defined
by an undirected graph G without cycles.

Using the idea of HMM, the array T is treated as a two-component field (X,Y’), where the
observed part Y = (y,,t € T)) consists of the feature vectors, which take values from a certain
set y, € ®. The hidden part X = (x4, € T') consists of classes that need to be labeled from
a finite set Q = {1,2,...,m}, where m is the number of classes. Let the hidden part X be
restored using the MAP estimation:

S,

(Y) = (24,t € T'), where
+(Y) = arg max p;(z:[Y). (1)

T+ EQ

=>

Let the feature vectors y,,t € T' be conditionally independent with respect to (w.r.t.) the
hidden part:

Ve(y X) = eyl xe). (2)

Let the hidden part X be a MRF w.r.t. the acyclic graph G. It was shown in [3], that a
priori and a posteriori fields of hidden classes X are one-sided MRFs with respect to the same
graph G.

In pattern recognition problem a posteriori distributions p;(z;|y,) are usually evaluated by
using some supervised learning method. Then the MAP solution of the hidden part X can be
estimated by using the so-called basic algorithm in [4, 5, 6] with two passes along the acyclic
graph G. The forward pass from the terminal vertexes to the root of G estimates filtering a
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posteriori marginal distributions of hidden classes. The backward pass from the root to the
terminal vertexes estimates interpolating a posteriori marginal distributions of hidden classes.

In [3, 4, 5] the particular model of a MRF with some simplifications was introduced. At
first, the model assumes that the one-sided MRF X is a homogeneous ergodic reversible finite
Markov chain. The next simplification is that the transition matrix Q(m x m) of the hidden
field X is a symmetric and doubly stochastic matrix (i.e., a matrix with unit sums of elements
over each row and each column), which consists of identical diagonal and identical non-diagonal
elements as follows:

1—¢q 1—q
4 w1 o el
1=q 1=q
Q _ _1 P m—l (3)
1—q 1—q
m—1 m-1 - 4

Such a matrix ) can be specified by a single diagonal element ¢, which is the unique Markov
parameter that needs to be adjusted.

Parametric adjusting of a set of acyclic graphs

Parametric adjusting of a finite set of acyclic graphs. Three algorithms for adjusting
diagonal elements and weights of the linear combination of a given set of acyclic graphs were
proposed in [6]. The general idea of them is to include the searching for the diagonal element in
the process of adjusting graph weights based on the Gauss-Seidel scheme used in [5]. Variations
of the diagonal element ¢ in the range 1/m < ¢ < 1 and graph weights w in the range 0 < w < 1
are considered like the coordinate-wise descent. In the first algorithm A1l all Markov models for
graphs Gy, k =1, ..., K are defined by a single diagonal element ¢. In two other algorithms A2
and A3 each graph G,k = 1,..., K corresponds to a separate acyclic Markov model with its
own diagonal element ¢, k=1,..., K.

These algorithms demonstrate [6] a high level of recognition quality. It is the same, for
instance, like the algorithm TRWS [7], which is considered as the most efficient one nowadays.

Parametric adjusting of a countable (full) set of acyclic graphs. Two recognition
algorithms named A4 (basic) and A5 (sequential basic) were previously developed [5] for this
case. Because we don’t know real acyclic graphs from the whole infinite countable set (or from
its some unknown limited subset in a particular case), we don’t know their weights in a linear
combination. More over, we don’t need to use graph weights in A4 and A5 algorithms.

The general idea of these algorithms consists in expanding vicinities of all objects w.r.t.
the arbitrary adjacency graph G (with cycles, e.g., raster lattice) in the data array up to the
moment when all objects will be in all maximal vicinities (Fig. 1).

. e S . B

Fig. 1. The expanded vicinity of the central point of a lattice 9x9 after steps 1, 2, 3, 8

Let each object ¢t € T be the root of some its personal and unknown for us acyclic graph G
from the countable set. The step-by-step vicinity expansions w.r.t. every graphs G can evaluate
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the step-by-step filtering MAP solutions for each object just by single pass along its current
vicinity sub graph of each GG, and can do it simultaneously with others. The idea of simultaneous
step-by-step expansions of all vicinities is the idea of the A4 algorithm (basic), which realizes,
per se, the parallel scheme of the set processing. The idea of sequential step-by-step expansions
of all vicinities is the idea of the A5 algorithm (sequential basic).

The final vicinities give the final MAP solutions for all ¢ € T as interpolating a posteriori
marginal distributions of hidden classes.

As a result, the linear combination becomes a real integration of some unknown subset of
acyclic adjacency graphs from the countable set represented by the given arbitrary graph G.

Both A4 and A5 algorithms have a single value of the diagonal element g, which is the
unique Markov parameter that needs to be adjusted.

It was shown in [5], A4 and A5 algorithms without parametric adjusting demonstrate a high
level of recognition quality too, which is statistically the same, for instance, with the TRWS
algorithm [7]. The algorithm for parametric adjusting of A4 and A5 consists in just variations
of the diagonal element ¢ in the range 1/m < ¢ < 1 without weights. Hence, we suppose only
the single integrated Markov model for the arbitrary graph G.

Here we focus on the A4 algorithm only for the countable (full) set of acyclic graphs. In
fact, if the scanning direction of the set of objects isn’t defined (sequential basic), we can use
really only the parallel scheme of the set processing. This scheme is very promising in view of
the fast processing of large sets.

Hyper-parameter adjusting problem

In general case, parameters can be divided into natural ones and hyper-parameters. Natural
parameters reflect the essential properties of a model. But in many cases, it is required to de-
termine some extra-parameters to control the configuration of the parametric model or a priori
distribution of natural parameters. These extra parameters are called as hyper-parameters.

Sometimes the difference between natural and hyper-parameters is quite unclear. The in-
terpretation of parameters as natural or hyper-parameters can be determined by investigator’s
point of view. In particular, such a problem arises in adjusting parameters for the combination of
acyclic adjacency graphs. Markov parameters and graph weights can be viewed as either natural
or hyper-parameters. It is a complicated problem to determine the correct hyper-parameters,
because they have to restrict decision rules in order to avoid overfitting. Thus they can’t be
directly used in the error minimization process based on the training set to estimate the natural
parameters. In model selection hyper-parameters are usually selected by the cross-validation. In
practice the k-folds cross-validation is often used, where data are split into roughly equal-sized
parts.

Some overfitting can occur in the cross-validation-based hyper-parameter optimization.
Therefore, it may be necessary to use another test set that doesn’t participate in the vali-
dation process. The statistical efficiency of the adjusted model is finally evaluated based on
the test set. The standard way of hyper-parameter adjusting is the grid search, which is an
exhaustive searching through a specified value set. This requires considerable time for multiple
training runs that are applicable only to fast learning algorithms. As a rule, no more than 2-3
hyper-parameters can be validated together.

In order to reduce the computational complexity we consider graph weights as natural
parameters, and Markov parameters as hyper-parameters for the finite set. At last, we propose
a hybrid approach [6] consists in adjusting Markov parameters as natural in the same procedure
with adjusting graph weights based on the Gauss-Seidel scheme. But the quality of the decision
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rule is evaluated by a simplified cross-validation scheme that is similar to hyper-parameter
adjusting scheme.

Simplified cross-validation scheme

In this work we apply our algorithms to the problem of image segmentation. Particularly,
we use our algorithms to segment 100 simulated raster textured images (Fig. 2) with the size
of 201x201. Each image contains three classes of textures which are realizations of normally
distributed two-dimensional random variables with slightly different means in the feature space
of RG-color components. The error rate of independent recognition for such images is not less

than 30%.

Fig. 2. The first simulated image and the exact segmentations of first eight simulated images

Generally, the set of images is divided into training and test sets, where the test set usually
contains 25% of the total volume of the initial set. Such a partition of the initial set is often
repeated 100 times. By repeating partitions some images may never participate in test, and
some others may never participate in training.

In the simplified scheme of cross-validation we alternately leave one image as a test and the
remaining images are used for cross-validation. It guarantees that each image is used for test
once, and all images are involved in training with the same number of times.

To reduce the computational complexity we apply the non-classical cross-validation with
only one image for training. It is known that a relatively small amount of samples in the
training set may lead to overfitting. Hence, at first glance, training on one image seems not
to be sufficient. However, an image of size 201x201 consists of about 40 thousands of pixels.
This means, in fact, we train classifiers on about 40 thousands of objects. This large number
of objects ensure us to train good classifiers with high generalization ability.

Another reason to use the non-classical cross-validation scheme is that adjusting Markov
parameters for one simulated image and for most of them have almost similar results. Indeed,
for each image let us consider the error line obtained by combining acyclic adjacency graphs
with equal weights and varying value of diagonal element. The similar error line is built on the
set of remaining images.

Experiments show that the values of diagonal element corresponding to minimums of errors
in both cases are almost identical (Fig. 3).

Furthermore, performing validation on most of images allows us to judge about the gener-
alization ability of the obtained decision rule just right on the validation set. Therefore, among
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all decision rules we can choose the one that potentially has the best generalization ability with
the lowest validation error, i.e., the average number of errors on the validation set.
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Fig. 3. Lines of recognition errors: solid for single image, dashed for a set of images

We can create the simplified scheme of cross-validation for estimating the general error as
follows:

Algorithm 1 The simplified scheme of cross-validation
Input: A set of N images.
Output: General error.

1: Exclude a testing image :
Alternately exclude the j* image 1 < j < N from the given image set and treat it as a
test.
2: Perform non-classical cross-validation on the remaining images:
3: - The other N — 1 images form the training set.
4: - Alternately select the k" image from the training set (1 < k¥ < N—1) and train parameters
05, on the k'™ image.
5: - The remaining N — 2 images are used for validation. Using parameters 6, estimate the
validation error ValErr, as the average value of recogntion errors on the validation set.
6: - Define the set of parameters corresponding to the lowest validation error:
éopt = argmin ValErry.
Op,k=1,...,N—1
7: Recognize the test image:
Estimate recognition error TestErr; on the test image using parameters éopt.
8: Repeat:
Return to step 1 until all images are tested once.
9: Calculate generate error:
Estimate the average value of test errors. This value is considered as the recognition error
on the general set, i.e., general error, which is calculated as follows:
GeneralError = % Zjvzl TestErr;.
10: Output:
Return GeneralError as General error.
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The simplified scheme of cross-validation is illustrated in Fig. 4. In such a scheme the
cross-validation error is defined by averaging all validation errors obtained by different sets of
parameters. However, the test error is evaluated using the best set of parameters among them.
Therefore, the general error should be less than the cross-validation error.

EEEE EE o
Test set (1 imﬂi/\ﬁaining set (N-1 images)

Training Validation
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TestErr, 1T
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e ————— = ]
0, = argmin ValErr,
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. Test image . Training image . Valid image

Fig. 4. The simplified scheme of cross-validation

To get the optimal parameters only, we can build a procedure without tests. The cross-
validation is performed throughout a given image set and we just need to select parameters
corresponding to the least validation error.

Experiments

Average cross-validation and general errors are shown in Fig. 5. Overall time for the sim-
plified cross-validation scheme of each algorithm is shown in Fig. 6. In comparing to others,
the Weight fitting algorithm based on the Gauss-Seidel method performs the simplified cross-
validation scheme very fast, but it has the highest CV and general errors.

The algorithms A1, A2, A3 for simultaneously adjusting the diagonal element and graph
weights are much more slower than the Weight fitting algorithm in performing the CV scheme.
However, the algorithms A1, A2, A3 considerably improve the quality of solutions with lower
CV and general errors.

The algorithm A1 with unique diagonal element performs the CV scheme with a little faster
than the algorithms A2 and A3 with multiple diagonal elements, while having higher CV and
general errors.

The algorithm A4 performs the CV scheme very fast with almost the same speed as the
Weight fitting algorithm while maintaining a high quality of recognition. Especially, the algo-
rithm A4 obtains the lowest CV error and the lowest difference between the CV and general
errors. It means the algorithm A4 is the best one in this paper in dealing with the overfitting
problem.
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Conclusion

In this paper we propose the simplified cross-validation scheme with reduced time complex-
ity in adjusting hyper-parameters. This procedure evaluates the statistical properties of decision
rules and determines the optimal combination of acyclic adjacency graphs with Markov param-

eters treated as hyper-parameters.

In view of the large volume of the real data it is very promising to use the parallel scheme
of the set processing. This scheme is based on the idea of the countable (full) set of acyclic
graphs to represent the real arbitrary ones (lattices for raster images). The experiments show

the high statistical quality of processing results.
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