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The paper is devoted to the problem of recovery of one-dimensional functions given a set of
noisy observations. Suppose that in addition, one is given a fixed set of a finite number of
function estimates. Based on this set of estimates, it is necessary to construct a new estimator,
the risk of which would be close to the risk of the “best” estimate (so-called oracle) in a given
set. The “best” estimator is a minimizer of the risk over the given set of function estimators.
New oracle inequalities for aggregation of regression function estimates in assumption of het-
eroscedasic Gaussian noise, namely, correlated Gaussian noise with different variances at each
design point, have been proved.
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Рассматривается задача восстановления функции регрессии по конечному числу на-
блюдений функции в гауссовским шуме, заданных в конечном числе детерминированных
точек. Предположим, что помимо наблюдений функции исследователю заранее известен
фиксированный набор из конечного числа оценок функции. На основе этого набора оце-
нок требуется построить новую оценку, качество которой было бы сравнимо с наилучшей
(в смысле среднеквадратичного риска) оценкой из заданного множества (c так называ-
емым «оракулом»). В работе получены новые оракульные неравенства для экспоненци-
альной агрегации упорядоченных оценок функции регрессии в предположении гетерос-
кедастичного шума, а именно: шум предполагается коррелированным (ковариационная
матрица известна) и дисперсия его различна в каждой точке наблюдения.
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1 Introduction

The paper is devoted to estimation of noisy vector (sequence space model) given a set of linear
estimators. The sequence space model plays significant role in nonparametric statistics. Many
problems can be transformed to the sequence space model formulation with white (i. e., with
noncorrelated identically distributed zero-mean noise) Gaussian noise or with colored (i. e.,
noncorrelated nonidentically distributed zero-mean) Gaussian noise. For example, very often,
linear inverse problems are easily transformed into diagonal form with the help of singular
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value decomposition [1]. In this paper, the generalization of such models for the correlated
colored Gaussian noise assumption is considered. Throughout the paper, it is assumed that
one is given a special set of linear estimators, namely, ordered smoothers as various methods
in statistics can be proved to have properties of ordered smoothers (for example, smoothing
splines [2, 3], spectral regularization methods [1, 4], etc.). There exist various approaches to
construct estimates given a set of estimators. One can use a model selection approach and
select one estimator, for example, by a method of the unbiased risk estimation [5] which goes
back to [6, 7].

Another approach is to use aggregation, namely, using a convex combination of given esti-
mators. This approach was firstly developed by Nemirovsky [8] and independently by Catoni [9].
To tune the weights of the linear combination, authors performed the sample splitting. Later,
this method was extended to several statistical models (see, e. g., [10–13]).

One can avoid sample splitting with the help of the exponential weighting. This method
originates from the solution of functional aggregation problem by penalized empirical risk min-
imization [12]. It has been shown that for this method, one can yield rather good oracle in-
equalities for certain statistical models [14–16].

The goal is to prove new oracle inequalities for aggregation of ordered smoothers in as-
sumption of heteroscedasic Gaussian noise, namely, correlated Gaussian noise with different
variances at each design point.

2 Problem Statement

This paper deals with a sequence space model

Yi = θi + ξi, i = 1, . . . , n, (1)

where (Y1, . . . , Yn)
T is the vector of observation; and (ξ1, . . . , ξn)

T is the zero-mean Gaussian
vector with known n × n covariance matrix Σ. The goal is to estimate an unknown vector
θ ∈ R

n based on the data Y = (Y1, . . . , Yn)
T.

Denote the diagonal elements of Σ by σ2
i , i = 1, . . . , n. Let one impose the following condi-

tions on the covariance matrix Σ .

1. The spectral norm is bounded from above:

σ2
max = sup

x∈Rn, ‖x‖=1

xTΣx <∞ .

2. The smallest eigenvalue is bounded from below:

σ2
min = inf

x∈Rn, ‖x‖=1
xTΣx > 0 .

3. Assume also that
sup

x∈Rn, ‖x‖=1

xT [Σ ◦ Σ] x < C2
◦

where ◦ is the Hadamard product and C◦ is the constant.

Let one denote the risk of an estimator θ̂(Y ) = (θ̂1(Y ), . . . , θ̂n(Y ))
T by

R(θ̂, θ) = Eθ‖θ̂(Y )− θ‖2. (2)

Here, Eθ stands for the expectation with respect to the measure Pθ generated by the observa-
tions (1) where ‖·‖ denotes the norm in R

n: ‖x‖2 =
∑n

i=1 x
2
i .
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Throughout this paper, θ will be recovered with the help of linear estimates

θ̂hi (Y ) = hiYi, h ∈ H (3)

where H is the finite set of so-called ordered smoothers, which has the following definition.

Definition 1. A set H is a set of ordered multipliers if

– hi ∈ [0, 1], i = 1, . . . , n for all h ∈ H;

– hi+1 6 hi, i = 1, . . . , n, for all h ∈ H; and

– if for some integer k and some h, g ∈ H, hk < gk, then hi 6 gi for all i = 1, . . . , n.
The last condition means that vectors in H are naturally ordered, since for any h, g ∈ H,

there are only two possibilities: hi 6 gi or hi > gi for all i = 1, . . . , n.

Substituting the linear model (3) into the risk definition (2), one obtains

R(θ̂h, θ) = ‖(1− h) · θ‖2 + ‖σ · h‖2,

where x · y denotes the coordinate-wise product of vectors x, y ∈ R
n, i. e., z = x · y means

that zi = xiyi, i = 1, . . . , n, and σ = (σ1, . . . , σn)
T. Since R(θ̂h, θ) depends on h ∈ H, one can

minimize it over h ∈ H. The minimal risk

rH(θ) = min
h∈H

R(θ̂h, θ)

is often called in the literature as the oracle risk [8, 9].
Naturally, it is not possible to use the estimate

θ∗(Y ) = h∗ · Y, h∗ = argmin
h∈H

R(θ̂h, θ)

because it depends on the unknown vector θ. But if one knew θ, it would be possible to point out
the estimate with the least risk. That is why, the goal is to construct an estimator θ̃H(Y ) based
on the family of linear estimators θ̂h(Y ), h ∈ H, which is close to the oracle risk. Formally, this
means that the estimator θ̃H(Y ) should satisfy the so-called oracle inequality

R(θ̃H, θ) 6 rH(θ) + ∆̃H(θ)

which holds uniformly in θ ∈ R
n.

This inequality implies that the term ∆̃H is small with respect to the oracle risk uniformly
in θ ∈ R

n. It is well known that in general, it is not possible to construct such an estimator [17].
But as it was shown in [17] for the set H of ordered smoothers, one can find an estimator which
provides the following properties of the remainder term:

– ∆̃H(θ) 6 C̃rH(θ) for all θ ∈ R
n where C̃ > 1 is the constant; and

– ∆̃H(θ) ≪ rH(θ) for all θ : rH(θ) ≫ σ2.

That is why, throughout this paper, it will be assumed that the set H contains solely ordered
multipliers. Below, an example of ordered smoothers is given. Note that ordered smoothers are
very common in statistics, e. g., smoothing splines [2, 3], spectral regularization methods [1, 4].

3 A Motivating Example

Consider the regression estimation problem in the case of colored noise. It is necessary to recover
a one-dimensional function f(x), x ∈ [0, 1], given the noisy observations

Zi = f(xi) + ξ̄(xi), i = 1, . . . , n, (4)
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where xi ∈ (0, 1) and ξ̄i(x) is the centered Gaussian random process with variance σ̄2(x). Denote
by Σ̄ the covariance matrix of the vector (ξ̄(x1), . . . , ξ̄(xn))

T.
Let one make use of the smoothing spline estimate, which is defined as follows:

f̂α(x, Z) = argmin
f

{ n
∑

i=1

[Zi − f(xi)]
2 + α

∫ 1

0

[f (m)(x)]2
}

(5)

where f (m)(·) denotes the derivative of order m and α > 0 is the smoothing parameter which
is usually chosen with the help of the Generalized Cross Validation (see, e. g., [18]).

To transform this model into the model (1), consider the Demmler–Reinsch basis [19]
ψk(x), x ∈ [0, 1], k = 1, . . . , n, which has double orthogonality property

〈ψk, ψl〉n = δkl ;
1

∫

0

ψ
(m)
k (x)ψ

(m)
l (x) dx = δklλk, k, l = 1, . . . , n,

where here and below 〈u, v〉n stands for the inner product

〈u, v〉n =
1

n

n
∑

i=1

u(xi)v(xi)

and λi are the eigenvalues of the basis.
It is assumed for definiteness that the eigenvalues λk are sorted in ascending order:

λ1 6 · · · 6 λn.

With this basis, one can represent the underlying function as follows:

f(x) =
n

∑

k=1

ψk(x)θk (6)

and one gets from (4)
Yk = 〈Z, ψk〉n = θk + ξk

where

ξk =

n
∑

j=1

ξ̄(xk)ψk(xj) . (7)

Next, substituting (6) in (5), one arrives at

f̂α(x, Z) = argmin
f

{ n
∑

k=1

(Yk − θk)
2 + α

n
∑

k=1

λkθ
2
k

}

.

Therefore,

f̂α(x, Y ) =
n

∑

k=1

θ̂kψk(x)

where

θ̂k =
Yk

1 + αλk
.
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Thus, one may conclude that the models (1)–(3) and (4)–(5) become equivalent with

hk = hαk =
1

1 + αλk
.

The vector ξ = (ξ1, . . . , ξn)
T is a Gaussian zero-mean vector with covariance matrix

Σ =
1

n2
ΨTΣ̄Ψ

where matrix Ψ consists of the columns (ψi(x1), . . . , ψi(xn))
T, i = 1, . . . , n.

From the orthogonality property of Demmler–Reinsch basis, it is easily seen that eigenvalues
of matrix Σ are equal to σ2

i = σ̄2(xi)/n. Thus, for fixed n, the matrix Σ has finite eigenvalues
and the problem is equivalent to (1).

The most interesting case is when Σ̄ is a diagonal matrix with diagonal elements
σ̄2(x1), . . . , σ̄

2(xn). It is known that in the case of equidistant design, Demmler–Reinsch ba-
sis has the following asymptotic as n, k → ∞ [2]:

ψk(x) ≈
√

2

n
cos(πkx).

After a transformation of the regression estimation problem (4) with the help of Demmler–
Reinsch basis, one obtains the following covariance of the noise (7):

Eξkξj ≈
1

n

n
∑

i=1

σ2(xi) cos(π(k − j)p).

Thus, matrix Σ approximately equals to a correlation matrix of a stationary Gaussian sequence
with variance

∑n

i=1 σ
2(xi)/n and the problem (4) becomes equivalent to the problem of esti-

mation of an unknown vector in assumption of stationary noise.
In practice, one has to estimate the unknown covariance in (4). For the model with stationary

noise, it is easy to estimate variance σ2 given the data, for example, by

σ̄2 =
1

2n

n−1
∑

i=1

[Zi − Zi+1]
2.

4 Exponential Weighing of Ordered Smoothers

In what follows, the exponential weighting estimate is used:

θ̄(Y ) =
∑

h∈H

wh(Y )θ̂h(Y )

where

wh(Y ) = πh exp

[

− r̄(Y, θ̂
h)

2βσ2
max

]/

∑

g∈H

πg exp

[

− r̄(Y, θ̂
g)

2βσ2
max

]

.

Here, parameter β > 0 is fixed and r̄(Y, θ̂h) is the unbiased risk estimate of θ̂h(Y ) defined by

r̄(Y, θ̂h)
def
= ‖Y − θ̂h(Y )‖2 + 2

n
∑

i=1

hiσ
2
i −

n
∑

i=1

σ2
i .
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In order to cover H with small and large cardinalities, make use of the special prior weights
defined as follows:

πh def
= 1− exp

{

−
∑n

i=1 σ
2
i (h

+
i − hi)

βσ2
max

}

. (8)

Here,
h+ = min{g ∈ H : g > h}, πhmax = 1

where hmax is the maximal multiplier in H. Along with these weights, one needs also the follow-
ing condition which can be proved to be true for smoothing splines and spectral regularization
methods.

Condition 1. There exists a constant K◦ ∈ (0,∞) such that

‖h‖2 − ‖g‖2 > K◦

(

‖h‖1 − ‖g‖1
)

(9)

for all h > g from H, where ‖ · ‖1 stands for the l1-norm in R
n, i. e.,

‖h‖1 =
n

∑

i=1

|hi|.

Mention the following oracle inequality [16] for the exponential weighting of ordered
smoothers in the case of white Gaussian noise with variance σ2 that is diagonal Σ with σmin

= σmax = σ.

Theorem 1. Assume that H is a set of ordered multipliers, β > 4, and Condition 1 holds.

Then, uniformly in θ ∈ Rn,

Eθ‖θ̄ − θ‖2 6 rH(θ) + 2βσ2 log

[

C

(

1 +
rH(θ)

σ2

)]

.

This oracle inequality outperforms (in the form of the remainder term) Kniep’s oracle in-
equality [17].

Theorem 2. Uniformly in θ ∈ Rn,

Eθ‖ĥ · Y − θ‖2 6 rH(θ) +Kσ2

√

1 +
rH(θ)

σ2

where a minimizer of the unbiased risk estimate ĥ = argmin
h∈H

r̄(Y, θ̂h) corresponds to the case

β → 0 in exponential weighting and K is the generic constant.

The main result of this paper is the following new oracle inequality with remainder term of
the same form as in [16] for the exponential weighting in the case of colored noise problem.

Theorem 3. Assume that H is a set of ordered multipliers, β > 4, and Condition 1 holds.

Then, uniformly in θ ∈ Rn,

Eθ‖θ̄ − θ‖2 6 rH(θ) + 2βσ2
max log

[

C

(

1 +
rH(θ)

σ2
min

)]

.

Here and in what follows, C = C(C◦, K◦, β,κ) denotes strictly positive and bounded constant

depending on C◦, K◦, β, and κ, where κ = σmax/σmin.
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For the case of stationary noise ξ with variance σ2, one has σ2
min = σ2

max = σ2 and the
following

Corollary 1. Assume that H is a set of ordered multipliers, β > 4, and Condition 1 holds.

Then, uniformly in θ ∈ Rn,

Eθ‖θ̄ − θ‖2 6 rH(θ) + 2βσ2 log

[

C

(

1 +
rH(θ)

σ2

)]

.

Here and in what follows, C = C(C◦, K◦, β) denotes strictly positive and bounded constants

depending on C◦, K◦, and β.

5 Simulations

To find out what value of β is good from a practical viewpoint and to compare the cases of white
and coloured Gaussian noise, a numerical experiment has been carried out. The present author
compares the exponential weighting methods applied to the set of cubic smoothing splines (as
ordered smoothers) for β = {0, 1, 2, 4} and for the equidistant design:

H =

{

h : hk =
1

1 + [α(k − 1)]4
, α > 0

}

where an asymptotic formula for the eigenvalues of Demmler–Reinsch basis was used in the
case of equidistant design: λk ≍ (πk)4, k → ∞.

The scheme of the experiment is the following. For a given A ∈ [0, 300], 100 000 replications
of the observations

Yk = θk(A) + ξk, k = 1, . . . , 400,

are generated. Here, θ(A) ∈ R400 is the Gaussian vector with independent components and

Eθk(A) = 0, Eθ2k(A) = A exp

(

− k2

2Ω2

)

where Ω = 50.
Two types of the noise ξ were considered:

1) standard Gaussian white noise (σi = 1); and
2) Gaussian vector with covariance matrix Σ with eigenvalues σi = i/400, i = 1, . . . , 400.

Next, the mean oracle risk

r̄H(A) = Emin
h∈H

{

‖(1− h) · θ(A)‖2 + ‖σ · h‖2
}

and the mean excess risk

∆̄β(A) = E‖θ(A)− θ̄(Y )‖2 − r̄H(A)

were computed with the help of the Monte-Carlo method. Finally, the data {r̄H(A), ∆̄β(A),
A ∈ [0, 300]} are plotted in Fig. 1 to illustrate graphically the remainder term ∆β(r

H) = Eθ‖θ̄
−θ‖2 − rH(θ).

Looking at Fig. 1, one sees that there is no universal β minimizing the excess risk uniformly
in θ. However, intuitively, it seems that a reasonable choice is β ≈ 1 [15] but unfortunately,
good oracle inequalities are not available for this case. Almost all methods demonstrate similar
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Figure 1 Exponential weighting for the white (a) and colored (b) noise cases. The data {r̄H(A),
∆̄β(A), A ∈ [0, 300]} that is the dependancy of excess risk on oracle risk is in the pictures

statistical performance (in Fig. 1, for the values of oracle risk bigger than 50). However, when
rH(θ)/σ2 is not large, the exponential weighting works usually better (in Fig. 1, for the values
of oracle risk from approximately 10 to 50).
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6 Proofs

The main steps of the proof are based on a combination of methods for deriving oracle inequal-
ities proposed in [16, 20]. Here, the main steps in the proof are sketched, all details are given
below.

With the help of Stein’s formula for the unbiased risk estimate, it can be shown that for
β > 4,

Eθ‖θ̄ − θ‖2 6 Eθ

∑

h∈H

wh(Y )r̄(Y, θ̂h) 6 rH(θ) + 2βσ2
maxEθ

∑

h∈H

wh(Y ) log
πh

wh(Y )

− 2βσ2
maxEθ log

{

∑

h∈H

πh exp

[

− r̄(Y, θ̂
h)− r̄(Y, θ̂ĥ)

2βσ2
max

]}

(10)

where ĥ is the minimizer of the unbiased risk estimate ĥ = argmin
h∈H

r̄(Y, θ̂h).

To control the right-hand side at this equation, make use of the ordering property of esti-
mates θ̂h, h ∈ H. First, check that if πh is defined by (8), then

∑

h∈H

πh exp

[

− r̄(Y, θ̂
h)− r̄(Y, θ̂ĥ)

2βσ2
max

]

>
∑

h>ĥ

πh exp

[

− r̄(Y, θ̂
h)− r̄(Y, θ̂ĥ)

2βσ2
max

]

> 1

and so, the last term in Eq. (10) is always negative.
The most difficult and delicate part of the proof is related to the average Kullback–Leibler

divergence Eθ

∑

h∈H w
h(Y ) log(wh(Y )/πh). To compute a good lower bound for this value, follow

the approach proposed in [20]. The main idea here is to make use of the following property of
the unbiased risk estimate: for any sufficiently small ε < 1, there exists ĥε depending on Y such
that with probability 1, for all h > ĥε,

r̄(Y, θ̂h)− r̄(Y, θ̂ĥ) > 2βε
[

‖σ · h‖2 − ‖σ · ĥ‖2
]

+ 2βσ2
min .

This equation means that wh(Y ) are exponentially decreasing for large h. With this property,
one obtains the following entropy bound:

∑

h∈H

wh(Y ) log
πh

wh(Y )
6 log





∑

h6ĥε

πh +
C

ε
exp

(

C

ε

)



 .

The rest of the proof consists in deriving the following bound from (9) and (8):

∑

h6ĥε

πh
6 1 +

‖σ · ĥε‖2
K◦βσ2

max

and

√

Eθ‖σ · ĥε‖2 6
√

rH(θ)

1− 2βε
+

√
1 + 2β

1− 2βε

√
KC◦

σ2
min

.

Finally, combining the above equations, one arrives at (1).
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7 Concluding Remarks

Based on the probabilistic properties of the unbiased risk estimate, the oracle inequality was
proved for the method of aggregation of smoothing splines for the regression estimation problem
in the case of colored noise. However, it seems that no good oracle inequalities are available for
the reasonable choice of β parameter in the definition of aggregating weights. Numerical results
demonstrate similar statistical performance for different choice of β parameter.
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[11] Lecué G. Simultaneous adaptation to the margin and to complexity in classification // Ann. Stat.,
2007. No. 35. P. 1698–1721.

[12] Rigollet P., Tsybakov A.B. Linear and convex aggregation of density estimators // Math. Methods
Statist., 2007. No. 16. P. 260–280.

[13] Rigollet Ph., Tsybakov A. Sparse estimation by exponential weighting. 2011. arXiv:1108.5116v1
[math.ST].

[14] Leung G., Barron A. Information theory and mixing least-squares regressions // IEEE Trans.
Inform. Theory, 2006. Vol. 52. No. 8. P. 3396–3410.

[15] Dalayan A., Salmon J. Sharp oracle inequalities for aggregation of affine estimators. 2011.
arXiv:1104.3969v2 [math.ST].

[16] Chernousova E., Golubev Yu., Krymova E. Ordered smoothers with exponential weighting //
Electron. J. Statist., 2013. No. 7.

[17] Kneip A. Ordered linear smoothers // Ann. Stat., 1994. No. 22. P. 835–866.

[18] Wahba G. Spline models for observational data. — Philadelphia, PA, USA: SIAM, 1990. 161 p.

[19] Demmler A., Reinsch C. Oscillation matrices with spline smoothing // Numerische Mathematik,
1975. No. 24. P. 375–382.

[20] Голубев Г.К. Экспоненциальное взвешивание и оракульные неравенства для проекционных
оценок // Пробл. передачи информ., 2012. Т. 48. №3. С. 83–95.

Поступила в редакцию 15.06.2015


