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A decision-making problem is solved in the field of operational research education. The paper
presents a method for recovery of changes in ratings of student employees. These ratings are
based on interviews at the information technology (IT) training center. A dataset consisting
of expert estimates for assessments for different years and overall rating for these students
is considered. The scales of the expert estimates vary from year to year, but the scale of the
rating remains stable. One should recover the time-independent ranking model. The problem is
stated as the object—feature—year panel matrix recovery. It is a map from student descriptions
(or their generalized portraits) to expected ratings for all years. Also, a stability of the ranking
model produced by the panel matrix is studied. A new method of panel matrix recovery is
suggested. It is based on a solution of multidimensional assignment problem. To construct
a ranking model, an ordinal classification algorithm with partially ordered feature sets and an
algorithm based on support vector machine have been used. The problem is illustrated by the
dataset containing the expert assessment of the student interviews at the I'T center.
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1 Introduction

The paper presents a solution for the panel matrix recovery problem, where the panel matrix
is a multidimensional object—feature—year [1] matrix. The objects of the matrix are represented
by vectors containing different object features for several years. This algebraic structure is used
to recover the ranking model and estimate its stability: whenever the parameters of the model
remain stable in different years, is considered to be stable. The original dataset is represented by
the design matrix, namely, the object—feature matrix, which contains all the object descriptions
during all the timestamps.

The main goal of this paper is to develop an algorithm of panel matrix recovery and to
recover the ranking model. Let the panel matrix Z be the matrix, where the entry z;;; is the
feature j of the student ¢ in the year ¢.

The problem of the panel matrix recovery can be found in the pattern recognition, when it is
required to recover the tracks of different targets received by sensors [2]. In this paper, another
application problem is considered that can be met in business-analytics: an employee selection
problem. The dataset containing expert assessments, which were received during the interview
at an educational I'T-center in 2006-2009, is considered. The purpose is to recover the ranking
model and to estimate the stability of this ranking model during all the years. It is proposed
to construct some generalized “portraits” of these students and to recover the panel matrix Z
based on these portraits. Note that in this paper, a special case of the panel matrix recovery is
considered when the features (answers from assessment) of the portraits remain stable and the
only elements that are changeable are the classes of students. The scheme of the panel matrix
recovery is shown in Fig. 1.
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Figure 1 The panel matrix recovery. The generalized student “portraits” that remain stable during
all the time are found and considered to be the panel matrix objects

The problem is stated as the multidimensional assignment problem. It requires to find a bi-
jection between object descriptions in different years. The main difficulty in solving this problem
is that the multidimensional assignment problem is NP-hard (nondeterministic polynomial-time
hard) [3]; therefore, it requires to use heuristic algorithms to solve it. There are several solutions
for this problem and related problems [4-6]. The papers [3,7] propose to use linear program-
ming and randomization algorithms. The methods proposed in the present paper are based on
a hypergraph construction. One can use a genetic algorithm [8]. As an alternative, the problem
is stated as the common min-cost max flow problem [9].

Define some terms that will be used for the dataset description.

Definition 1. A scale LL is an algebraic structure [10] with a fixed set of operations, relations,
and a fixed set of axioms.

Definition 2. A nominal scale C is a scale with a fixed binary relation:
1) z=yVar#y;

2) v,y:r=y=y=ux; and

3) vy, z:x=yANy=z=>x=2

where x, y, and z are the objects from the scale C: x,y, z € C.

Definition 3. An oridnal scale O is a nominal scale with a fixed relation:
1) zRu;
2) xRy NyRx = = = y; and
3) xRy NyRz = xRz

where z,y, z € Q.

Definition 4. A linear scale W is an ordinal scale with total order and addition and subtrac-
tion operations defined on it.

Definition 5. A ranking function f is a mapping from the object space X to the finite set of
classes Y with a total order defined on it [11].

The ranking model recovery problem can be met not only in the employee selection but
also in information technologies [12], agriculture [13], and energy management [14]. The type of
the ranking model recovery algorithm can be chosen with respect to the dataset scale [15-17].
In this paper, a pairwise dominating matrix algorithm is considered for the feature set with a
partial order defined on each feature [18]. Another algorithm considered in the present paper
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is an algorithm RankSVM, which is a generalization of a classification algorithm based on the
support vector machine (SVM) [19].

The ranking model is recovered by the dataset [20] containing students that attempt to pass
the interview at the educational center during 2006-2009. The data can contain missing values.
The dataset feature descriptions are shown in Table 1.

The expert proposes that each feature should give a positive contribution into the rating.
The higher score student gets the higher rating he receives according to the “bigger is bet-
ter” [21] principle. The nominal feature “Student’s interests” is not used in the ranking model
recovery, but it is used in the panel matrix recovery in order to cluster students. The expert also
recommends to round the feature “Student’s interests” in order to get three discrete values.

One of the steps of the panel matrix recovery is a clustering, which requires a distance func-
tion. This function determines how close to each other the students estimates are. A generalized
Heterogeous Euclidean-Overlap Metric (HEOM) function [22] and Heterogeous Manhattan-
Overlap Metric (HMOM) function [23] are proposed for a mixed-scale dataset (a dataset con-
taining linear, ordinal [24], and nominal scales). Extracting significant information from such
datasets is a challenging high priority issue for many organizations in the business analytics.

2 The problem formulation

In this section, a formal definition of the panel matrix Z and ranking model recovery problem
are presented.

Definition 6. The panel matrix Z is a matrix where the entry z;;; is the feature j (answers
from assessment) of student ¢ in year t.

The dataset contains the set of pairs of mixed-scale data:

© = {(x;,y;) : i € I}, the object index i € Z ={1,...,m},
X:[Xla"'axm]Ta Y €Y

with metric
d: XxX—=>R,

Table 1 Dataset feature descriptions

Feature Scale type Scale cardinality

Average score during university educa-
tion
Average score for the last term

Linear, W Rational number in [3;5]

Rational number, the cardinality

Acceptance preference (expert estimation) Ordinal, O )
changes during some years

Student’s interests: The experts used 3 discrete values

programming, . {programming, both, telecommunica-
telecommunication development, Nominal, C tion} in 2006; later, the experts used ra-
or both tional number

Students’ responsibility

Level of knowledge Rational number,

Motivation Ordinal, @ the cardinality changes during some
Student’s class — the final rating in the years

assessment
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where X = IL; x --- x IL,, is the object space; X is the object—feature matrix for the dataset;
x; C X; and y is the vector of classes for each object in dataset such that its elements are in Y.
In this paper, the generalized HEOM distance and HMOM distance functions are used as the
functions of d (see Egs. (12) and (14) below). Define a total order on the set of classes:

Y — {44177’44277’44377’44477’44577} (1)

where “17 < “27 < “37 < “4”7 < “57.

Let T = {t} be the set of timestamps of the estimations. In this paper, the set 7 contains
4 elements, corresponding to 2006-2009. Let X' be the matrix of the objects X of the year ¢.
Let D! be the distance matrix for all pairs of objects per year t:

t_ gt ot bt t
d;, = d(x3,%x,), x;,%, € X",

The panel matrix recovery procedure consists of the following parts:

11) a dendrogram constructing algorithm 0;

21) a clustering algorithm c;

31) a class recovery algorithm t;

41) a bijection recovery algorithm m that finds a bijection between cluster centroids M* of
different years; and

51) an algorithm a of averaging cluster centroids.

£y Tt M!
dt. dt. N

iJ 150

<>

2
S
Ne——————

Figure 2 Panel matrix recovery procedure

The panel matrix recovery procedure is shown in Fig. 2: for each year ¢, the algorithm ?
constructs the dendrogram T'. Then, calculate the optimal number of clusters N and the
algorithm ¢ proceeds clustering. For each cluster p from the set of cluster centroids M, the
algorithm v recovers its class §* € y'. After that, the algorithm m finds a bijection ¢ that
matches clusters from different years Y. As a result, get the panel matrix Z from the averaged
centroids M, which correspond to the student portraits, and the vector of recovered classes y*.

The algorithm ¢ clusters the objects of the dataset for each year t. Let M! C X be the set
of N cluster centroids for year ¢, M! = [py,..., py|T.

For each cluster centroid p, recover its class ;" € Y (1). Here, for this purpose, median
function has been used:

gy, = median{y; : cluster(x}) = k}

where cluster(x) is the function which returns the index of cluster that contains element x.
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Let the distance function be given by
p: XxX—=>R,. (2)

This function is used in algorithm m to find the mapping that satisfies criteria (5) and (4) (see
below). The distance function used as the function of p is also described below (15).

The algorithm m of the bijection recovery between clusters of different years finds the
permutation of cluster indexes:

o {1, N} = {1,... N} (3)

such that for each year ¢ the mapping is a bijection. Let use the distance function p (2) to
find this mapping. A set of cluster centroids is called Gy = [y, ..., 7] if it contains all the
centroids that ¢ returns k for them:

Gr = {p € X: p(index(p)) = k}

where index : M* — {1,..., N} is the function, which returns the index for each cluster.
Let us select ¢ that minimizes the following criteria:

1. The clustering criterion C¢: ¢ should minimize the average value of R where R is the ratio
from the average distance between objects p,, and p,, from cluster set Gy to the average
distance between cluster centroids Gy, and Gy,:

mean,,, .y, €de(“k1 ) y’kz)

meang,, .G, d(Gx,, Gx,)

Ce = meanger, nR(Gr), R(Gy) = (4)

2. The stability criterion Cs: ¢ should minimize the difference in classes g, and gy, of cluster

set Gy:
N
Cs=> " > | —0nl- (5)

k=1 py,, p, €Gr

The resulting optimization problem is the following:
¢ = arg min Cg;
p'ed
¢ = argmin Cs
'ed
where @ is the set of mappings from the index set {1,..., N} to itself such that for each

year t, the mapping is bijective.

As an averaging algorithm a, one gets averaged cluster centroids using the following function:

mean{; : p, € G} whenever L; is linear scale;
avg{fu,;} = < median{pg; : p, € G} whenever L; is ordered scale; (6)

mode{ g : b, € G} whenever LL; is nominal scale

where i € M is the averaged cluster centroid from Gj; and M is the set of averaged cluster
centoids. Let use M as an object set for the panel matrix Z.

As a result of the panel matrix recovery procedure, obtain the matrix Z that contains the
set of the averaged centroids M and the vector of recovered classes yl eyt
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Ranking model recovery
To solve the ranking model recovery problem, one should find a mapping:

f:X—=Y

which minimizes error function Q(X). In this paper, Kendall correlation coefficient [25] has
been used:
Q(X) =1 — KendallTau(y, y)

where y is the vector of classes which is returned for objects X by the function f; and the
Kendall correlation coefficient is

A0, ) Y > Yoo 0 > Ua}|

KendallTau =
m(m — 1)

1. (7)

3 Calculating optimal number of clusters

In the previous section, the number of clusters N was considered to be fixed. One can select
the value for N using expert estimates. The other way is to optimize the number of clusters
using heuristics. This section describes the optimization problem, which can be used as the
one way to find the optimal number of clusters N. Assume the number N of clusters remains
stable for each year from the set 7. The reason of this assumption is the wish to recover the
ranking model for each year of the panel matrix and to estimate correlation between rankings
of different years. If the number N differs for different years, this problem is incorrect.
Optimize the number of clusters N using dendrogram constructing algorithm 9.

Definition 7. The dendrogram T is a tree that is built using the distance matrix D which
shows the relationships between clusters.

Describe the dendrogram constructing method. Suppose one has a linkage algorithm:
A£:R+WXR+n—>XXX. (8)

It defines the pair of elements x; and x, to merge into one cluster p,. Let merge this pair and
then recalculate the distance matrix D? using information about the merged elements.

At the end of dendrogram constructing algorithm, one receives a tree T'. Its root contains
two last elements merged at the final step.

The example of dendrogram is shown in Fig. 3. The elements A, B, and C are clustering
until one cluster remains.

Theorem 1. For each N € {1,...,m}, a clustering with a set of N clusters is constructible,
where m is the number of objects.

Proof. Each step, the number of clusters is reduced by one. Therefore, after m — N steps, one
gets the set of clusters with cardinality equal to N. [

Let us construct the dendrogram ¥* for each year ¢ for optimal N calculating. The number
of clusters N is optimal whenever it satisfies the following criteria.

1. The uniform class criterion Cjy: the number of cluster centroids M of different classes
should be equal. NV should minimize the deviation of number of different classes of clusters:

Cu(M') = o{|M|,y € Y}

where |M{| is the cardinality of the set M with class y € Y; and o is the standard deviation.
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Figure 3 The example of dendrogram

2. Mixing class criterion Cy: the number of clusters N should decrease the difference of
classes inside clusters:

Cm(M') = mean,, emeo({y; : cluster(x;) = k}).

The number of clusters N should be less than or equal to the minimum number of objects
in the sets: N < m1%1 |X*|. Also, let construct a clustering that contains a representative of each
te

class; therefore, N should be greater than or equal to the cardinality of Y. The final formula
for the optimization problem is the following:

N = arg min(meanser (8 (M")));

N = g mnmeanicr (31 (M) ©
N >5 N < min|X.
teT

Some heuristics have been proposed to select N. Let us construct two dendrograms T,
for each year t. They use the linkage algorithms (8) Azs and Ay to estimate functionals dy
and 5E

In order to estimate Cy, let us use the following linkage algorithm:

Ay = arg min Dy ki, -
By s B, €M,

.....

Select a pair of the closest objects of the most common class (the class which has the most

number of representatives). Each step, the cardinality of the largest set M of cluster centroids

of the fixed class y has been reduced. The difference in cardinality between these sets decreases.

Therefore, the dendrogram T, is quite close to be optimal with respect to dy for the fixed N.
In order to estimate C'y, the following linkage algorithm has been used:

Appm = argmin  ||members(py, )| — [members (g, )||2,
ukl,quGMt,
|:’]k1 —gk2|:ma‘x

where members M! — 2X* are the functions that return a set of objects assigned to the cluster.
This linkage algorithm selects the pair (g, p,) of clusters with the largest difference in classes
and with the smallest difference in cardinality. Each step, the difference in classes inside some
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cluster has been maximized; therefore, the dendrogram is quite close to be the worst with
respect to 07 for the fixed N.

To find a compromise between two criteria Cy; and C)y, these criteria for each N have been
estimated and ranked. Consider the optimal number of cluster gets minimum of these ranks:

N = argmin(rank(Cy, N) + rank(Cpy, N))
N

where rank is the function that gives rank for each estimation for current V.

4 Distance functions for mixed-scale data

In this section, distance functions are described for different scale types — linear (10), ordi-
nal (11), nominal (13), and mixed (12) and (14). The distance function for mixed-scale dataset
is proposed below.

4.1 Distance function for linear-scale data

Consider the generalized distance function for a linear-scale dataset:

1/(2p)
(i %) = (% = x,")" Sk = x,7) (10

where p is the number; S is the symmetric nonnegative definite matrix (for example, identity
matrix I); and exponentiation is proceeded per component: x? = [, ..., 22|T. The Euclidean
metric corresponds to this formula with S =1 and p = 1:

n

r(x,%Xq) = Z(Xz - Xq)Q)l/Q‘

i=1

The Manhattan distance corresponds to this formula with S =1 and p = 0.5:
(X, Xq) = Z |x; — X4/
i=1

4.2 Distance for ordinal-scaled data

Define matrix functions H’* and H’~ for projection the object set X on feature j where the
scale L; is ordinal. Each component of vectors Hfr and H™ determine the order between
feature j of object ¢ and other objects:

(HA]-JF) _ 1 whenever z;; > x;;
] o
! 0 otherwise;

(H~j_) _ 1 whenever x;; > x;;;
v 0 otherwise.
Let the distance function pdist be given by:

m — (<Hij+,qu+> + <Hij_,qu_>>
m

pdist(x;;, xg;) =
where m is the number of objects in the dataset.
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Theorem 2. If IL; is a totally ordered set, then pdist is a metric.

Proof. At first, let us prove that the range of the function is in [0;1]. Let z;; be less than or
equal to xy; : x;; < x4;. Then

(H7* H/) = [[HU7(3, (H/7 H/ ) = [[H) |3

m — [[H]"][3 — |1H |13

- )
The maximum of the function is not more than 1. The function pdist gets minimum whenever
Tij = 45, pdist(x;j, x;;) = 0. The function is symmetric. Let us prove that the function satisfies
the subadditivity condition for each x, € X:

pdist(x;;, xe;) =

pdist(z;;, z4;) < pdist(zi;, Twj) + pAist(zy;, T45).-
The proof contains 3 cases:
Tij S Tgj S Twjs  Twj 2 Tij 2 Tgji Tij S Tuwj S Tij-
Consider the first case, other cases can be proved similarly:

2m — [[H][|3 — | [Hg |3 — 2|5 |3

pdiSt(l'ij, .flfwj) + pdiSt(xqﬁ ij) =

m
L 2m— |[EL ][5 — [[HZF| |3 — 2[H27]]3
=
C2m—|[B]T| - m A [HTE - 2AH 5 om = [[HT3 - H
= — = - = pdist(z;;, z4;) - .

4.3 The generalization of HEOM and HMOM distance functions
Supplement the HEOM [22] function for ordinal-scale datasets:

n 1/2
dl(XZ‘,Xj) = (Z T’(ZEij,Zqu)Q) (12)

k=1
where
overlap(z;;, x,;) whenever L; is a nominal scale; )
(@i, Tq5) = 4 pdist(@j, 245) whenever L; is an ordinal scale;
diff(z;5, 245) otherwise;

1 whenever z;; # x,;; -
overlap(z;;, x4;) = 0 otherwise:

: _ mij—mgsl
diff (25, wg;) = f=45
Li Ly )

the function diff(x;;, z,;) is determined by normalized difference between two values of feature j.
The range of the resulting function d is less than or equal to the square root of the feature
number: d(x;,x;) < /n.
The difference between HEOM and HMOM modifications is only in lack of exponentiation:

n

do(xi, %)) = Y r(ij, 2g5)- (14)

k=1
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5 Panel matrix recovery procedure

5.1 Clustering algorithm ¢

Let use a modification of k-means [26] algorithm as the clustering algorithm ¢. This algorithm
is iterative. At first, select N cluster centroids g, ..., gy randomly. Each iteration assign each
object x; from dataset X* to the closest cluster in the sense of the distance function d:

cluster(x;) = argmin d(x;, )
ke{l,..,N}

where cluster(x) is the function that returns a cluster index for each object x. After that,
recalculate cluster centroids:

pj = avg{wy, cluster(x;) = k}.

Use avg function (6) such that corresponds to scale types instead of arithmetic mean rec-
ommended in the k-means algorithm:

mean{X;j,...,X;,;}  whenever L; is a linear scale;
avg{Xij, -, Xi,;} =  median{x;,;,...,%; ;} whenever L; is an ordinal scale;
mode{x;,;,...,X;,;}  whenever L; is a nominal scale.

5.2 Bijection recovery algorithm m

In this section, two methods of the function ¢ (3) finding are considered: the reducing the
problem to the transport problem and the genetic algorithm.

Let state the problem of finding ¢ as multidimensional assignment problem [7]. Construct
| T |-partite hypergraph (V, E), V.= V! U..-UVI7! where T is the set of years. The vertices of
each partite sets V* correspond to the set of cluster centroids M’ for year t. The hyperedges
of the hypergraph correspond to the all subsets of cluster centroids that contain |7| cluster
centroids and correspond to the condition that each hyperedge e € E contains only one cluster
centroid for each year. Let the weight of each hyperedge be given by:

We = Z p(1y, Ba).

Hy,Ho€e

It is required to find a maximal set of hyperedges where each pair of this set does not intersect
and where the sum of the hyperedge weights is minimal.

5.3 Reducing the ¢ finding problem to the transport problem

Consider a two-dimensional assignment problem, where it is required to find the bijection
between two sets of objects. This problem can be stated as the min-cost max flow problem
by constructing a transport directed graph [27]. The vertices of this graph correspond to the
cluster centroids M* with capacity equal to one and edge weights equal to the distance between
cluster centroids: p(u'', ,u,;Q). After reducing the problem, it is required to find the maximal flow
with minimal edge weight sum, which is called the cost of the flow. In the considered case, one
can construct a hypergraph (V) E) instead of the directed graph whose hyperedge configuration
was described above.

In order to find the maximal flow of minimal cost of the hypergraph (V| E), let transform
the hypergraph into a directed graph (V’, E') and use common algorithms for directed graphs.
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There are some heuristic algorithms of hypergraph to directed graph transformation that can
be used for this case [28,29].

5.4 Genetic algorithm

As an alternative method of finding the function ¢, let use the genetic algorithm [8]. Each
solution of the problem is represented by a hypergraph with N hyperedges such that each pair
of hyperedge does not intersect and each hyperedge contains only one cluster centroid for each
year. Let S?% be a matrix for the solution %k of the generation ¢. The entry Szjk is the index
number of cluster of the year j in the hyperedge i:

N ,
Si = whenever pj € e;

where e; € E. The starting population S! is generated randomly, its cardinality s, is a structural
parameter. Each new generation is generated from the older one by application the special
procedures: mutation, crossover, and selection.

As the crossover of the generation ¢, the following procedure has been used. Select two
solutions S?* and S%2 from this generation randomly. Also, select a row I, from the first matrix
and a row [, from the second matrix, the number of columns to modify col, and a set of column

indexes {cperm(l), e vcperm(col)}v where perm is a random permutation. For each column c¢; in
: : : qk1 qko
{cperm(l), o Cperm(cc,l)} and for both matrices, proceed the permutation given by S/ «» S/

After crossover procedure, mutations. Select a solution S? and a column ¢ randomly. After
that, proceed random permutation on all the elements of column ¢. Such procedure helps one
to avoid stopping algorithm in local extrema. After mutations and crossovers, select the best
solution generation S*! in the sense of the distance function p. The number of mutations
per generation fiutation, the number of crossovers per generation ferossover; and the generation
cardinalities s, are the structural parameters of the algorithm. The algorithm stops whenever
the generation satisfies the stopping criterion C'x. In this paper, stopping criterion is used:

Cr = (Kauw > Kav) or (K, does not change after few iterations)

where
1 1
Kav = ICANy €T t1#£t2 (KendallT&u(S({,(...),N,tlv S?,(...),N,tg))7

S?1) is the best solution of the current generation in the sense of p, S‘fz ~.¢ 1s the column ¢
of the matrix S%. K,, is a structural parameter, which represents required average Kendall
correlation coefficient in the panel matrix Z.

5.5 Defining hyperedge weight

Use the sum of the generalized distances (12) and (14) between cluster centroids as the hyper-
edge weights:

vd(xy 2 )2 1/2
p1(xi, X;) :<Zk:1 (:j b k) + pdist*(y;, y;) - coef) ; (15)
" d tky Lyg
pa(xi, X;) = 2=y Ui ) + pdist(y;, y;) - coef (16)
n

where coef is the parameter which regulates the balance between priority of the stability crite-
rion (5) and the clustering criterion (4). Whenever coef = 1, these criteria priorities are equal.
Let use (15) in the experiment with the generalized HEOM metric and (16) in the experiment
with the generalized HMOM metric.
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5.6 Complexity analysis of the algorithm

The clustering algorithm complexity can be bounded to O(Nnm-iter) where iter is the number
of iterations of the clustering algorithm.

The complexity of one crossover series can be bounded to O( fuossover|T])- The complexity
of a mutation series is O( fiutationV); 80, the naive estimation of the genetic algorithm iteration

1s O(fcrossover‘T| + fmutationN)‘

6 The ranking model recovery

In this section, the methods of the ranking model recovery used in this paper are described.
Consider three ranking algorithms: the ordinal classification algorithm using partially ordered
feature sets [18] and rankSVM [30], the algorithm based on the SVM [19], and an algorithm
based on the method of least squares in order to compare the results of the ranking model
recovery.

6.1 The ordinal classification algorithm using partially ordered feature sets

In this subsection, suppose that the class of the object is also a feature with number 0: Y
= Lo, zi0 = y;,x; € X. For each feature L, construct a matrix U, which determines the order

of the feature ¢:
o 1 if zy, < x5,
Uy(i, j) = { e

0 otherwise.

Estimate the matrix @ using feature matrices U,, ¢ € {0,...,m}. This matrix 9 is called
a pairwise dominance matrix:

where w is the weight vector for feature matrices.
After that, estimate the class g of the object using the pairwise dominance matrix:

= f(§,)), A= argminly — ]
In this paper, a logistic regression is used for w and A estimations. Also, propose that
Ai = A; whenever y; = y;.

6.2 The RankSVM algorithm

This algorithm is a generalization of the classification algorithm based on SVM [19]. The opti-
mization problem for this algorithm is given by

lwll2+C > &; — min,
0,
for each x;,x; € X, y, > y; : K(w,x;) > K(w,x;) +1—¢&;
where

K:R'"xX >R (17)
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is the kernel function, commonly the dot product; §;; and C' are the parameters. This optimiza-
tion problem can be reduced to the classification SVM optimization problem [30] and solved
by standard methods [19].

The most interesting feature of this algorithm is the use of different kernel functions K
instead of dot product. This modifies original object space and makes it more similar to linearly
separable space. In this paper, the following kernel functions have been used:

K(x,%x;) = x; -XJT; (18)
1 3
T .
K(x;,%x;) = (;xZ . xj) : (19)
1 2
K(x;,x;) =exp | ——|x; —x;]7 ) ; (20)
n
1 T
K(x4,%;) = tanh | —x; - x; | . (21)
n

6.3 The algorithm based on least squares method

Use this algorithm as a basic ranking algorithm. The main idea of this algorithm is in finding

coefficients aq, . .., a,, which solve the optimization task:
m n
A= E Yi — E ;x| — min.
i=1 j=1 9

The resulting function is given by

round <Z?:1 ogx,j) whenever round (Z?Zl ozjxij> € {1,2,3,4,5};
f(x)=4¢5 whenever round <Z?:1 ozjxij) > b;

1 whenever round <Z?:1 ozjxij) < 1.

6.4 Transforming ordinal features into linear features

In order to use the information gathered from ordinal features, the following approach has been
used [31]. Each ordinal feature with scale L; is proposed to match with some latent linear
feature with scale I}, which can be recovered by the following rule:

_ . * * .
x;; = lj, whenever lju_1 ST < Ly

where [j,, is the u value of the set of values of L; sorted ascendingly; zj; is the value of latent
variable; %, is the threshold:

7ju

le = —0Q, lj\]Lj\ = 0

with ¥~! being the inverse normal distribution. This transformation matches the ordinal feature
with some real-valued intervals. Use the upper limit of the intervals as a representer of the latent
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linear feature, i.e., x7; = lj, whenever [5,_; < zj; < [j,. Let the value corresponding to the
largest value of the ordinal feature be z}; = ;-1 + mean({lj, — lju—1,u € {1,...,[L;| — 1}).

7 Computational experiment

In this section, the results of the experiment are presented and conclusions on the applicability
of the proposed algorithm to the considered problem are drawn. The main goal of the present
experiment is to confirm or deny the efficiency of the described panel matrix recovery method
and recover the ranking model in the most efficient way. The dataset [20] contains a table with
284 student assessments. Each assessment contains 7 features, the class of the student, and the
year of the interview. The source of the computational experiment is available at [32].

For the experiment, the following software was used:

— GNU Octave v.3.8.1;

— SVMeht v 6.02.;

— batch high throughput multidimensional scaline for MATLAB/GNU Octave programming
language; and

— Python v.2.7. with NumPy and scikit-learn packages.

7.1 Panel matrix recovery

In order to handle with missing values, k-nearest neighbors algorithm has been used for miss-
ing values imputation [33]. & = 3 was chosen using cross-validation. The optimal number of
clusters N has been estimated by solving the optimization problem (9) and the result N = 20
has been got. The results of clustering for year 2007 are shown in Fig. 4. The coordinates of
the objects were received by projection the data X' onto two-dimensional space {&;, &>} using
High-Throughput Multidimensional Scaling [34] method. The colors of the plot correspond to
different cluster indexes.

3
2 ® ¢ )
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N ®
up ®
21 e ©
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20 . P
E o L o [}
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-1 oo H
&
) w w w Lo
-2 -1 0 1 2 3

Projection onto &

Figure 4 The result of clustering for year 2007

In order to reduce the randomnicity in the experiment, 10 tests have been proceeded and
the results have been averaged. The parameter coef (15) was set to 1. The cardinality of the
starting population s; was set to N - |T]. For each generation S¢, |7 - s¢ mutations and (7))
= 5%(s? — 1)/2 crossovers have been proceeded. Such parameter values give an availability to
crossover all the pairs of solutions and to mutate each column of each hypergraph matrix. The
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cardinality of all the generations remained stable: s9™! = s9. The required average Kendall
coefficient f(av was set to 0.85.

The results of the panel matrix recovery have been estimated by the Kendall correlation
coefficient (7). The results of the Kendall correlation for the experiments with HEOM and
HMOM metrics are represented in Tables 2 and 3. The computational experiment shows that
the proposed algorithm of the panel matrix recovery gives good results on the considered
dataset.

Table 2 Kendall coefficient for panel matrix Z recovery with HEOM metric

Year 2006 2007 2008 2009
2006 1 0.85629 0.80154 0.85270
2007 0.85629 1 0.84301 0.85728
2008 0.80154 0.84301 1 0.84731
2009 0.85270 0.85728 0.84731 1

Table 3 Kendall coefficient for panel matrix Z recovery with HMOM metric

Year 2006 2007 2008 2009
2006 1 0.87714 0.76905 0.77979
2007 0.87714 1 0.82962 0.80129
2008 0.76905 0.82962 1 0.82266
2009 0.77979 0.80129 0.82266 1

The mean of pairwise Kendall coefficients for the panel recovery with HMOM is 0.81326
while for HEOM, this value is 0.84302. Therefore, HEOM metric is quite more efficient for the
considered purpose. As one can see, the panel matrix recovery gives rather stable results for all
the years.

7.2 The ranking model

The difference between the real class y of an object x and the recovered class ¢ has been used
as the error function (). The algorithms were tested using “Leave one out” method. Different
kernel functions (17) have been used during the RankSVM algorithm testing.

The results of the experiment are shown in Table 4.

The RankSVM algorithm showed the best result and was selected as the ranking model
recovery algorithm. Another good result was received from the algorithm based on pairwise-
dominating matrix.

7.3 Computation for the simulated data

Investigate the performance of the proposed algorithm. Conduct two series of the experiments:
the series with adding noise into object features and adding noise into object classes.
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Table 4 Results of the ranking model recovery

Year 2006 2007 2008 2009  Mean value
LS-algrotihm 0.7 0.57 0.68 0.62 0.64
Pairwise-dominating matrix 1.2176 1.1412 1.2647 1.2235 1.2118
RankSVM, Eq. (18) 0.55 0.52 0.62 0.60 0.58
RankSVM, Eq. (19) 1,2741 0.98 1.3451 1.1667 1.1914
RankSVM, Eq. (20) 0.7511 0.5413 0.7285 0.7501 0.6927
RankSVM, Eq. (21) 1.2741 0.98 1.3451 1.1667 1.1914

During the experiment with adding noise into features, change each object feature value

randomly with probability from 10% to 50%.

During the experiment with adding noise in classes, replace the class of each object by
constant for each year. In these experiments, HEOM metric has been used.

The results of the experiments are shown in Figs. 5 and 6.

Figure 5 shows the mean of Kendall correlation coefficient values for each pairs of years.
The genetic algorithm uses the combination of two criteria for selecting optimal solution. After
adding noise into objects’ features, the algorithm tries to optimize the matching of classes for
different years. The experiment with adding noise into object classes shows the opposite case —
the dataset lost the uniformity of classes per years and, therefore, the average error did not

increase so dramatically as in the first experiment.
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Figure 5 Average Kendall coefficient

In order to estimate the quality of the ranking model recovery in datasets with noise,
the ranking model recovery has been tested on the simulated datasets generated in the first

experiment series.

The result of the ranking model recovery is shown in Fig. 7. As one can see, the RankSVM
algorithm and pairwise-dominating algorithm give the similar results.
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The error of the least squares-based algorithm increases dramatically; therefore, it is better
not to use it if the dataset contains significant amount of noise.
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Figure 7 The results of rank model recovery

8 Concluding remarks

10 20 30 20 50
Perent of noise

on simulated data

In this paper, the method of the panel matrix recovery has been proposed. The heuristic method

of calculating optimal number of clusters has been suggested for clustering objects per year.
Two algorithms have been considered to construct a bijection between clusters of differ-

ent years based on reducing this problem to multidimensional assignment problem — the ge-
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netic algorithm and the algorithm based on the reducing the problem to the transport prob-
lem.

The experiment for the panel matrix and ranking model recovery using genetic algorithm
was proceeded. Two metric functions were compared. The HEOM metric showed the best
result. The experiment showed that the panel matrix was stable in the sense of ranking
model stability. The best result of ranking model recovery was shown by the RankSVM al-
gorithm.
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Pabora mocssimena BOCCTAHOBIEHUIO €2KETO/IHBIX M3MEHEHUN PEHTUHTOB CTY/IEHTOB IIPU CO-
OeceoBaHuu B yueOHBIHN 1IeHTp. PaccMaTpuBaeTcs BIOOPKA, COCTOSIIAS U3 SKCIIEPTHBIX OIEHOK
CTYJIEHTOB, IIPOXOJUBIINX cobeces0BaHUE B yUeOHBIH IEHTP B T€U€HUE HECKOJBKUX JIET ¥ UTO-
TOBBIX PEUTUHTOB CTyAeHTOB. [IIKa/Ibl 9KCIIEePTHBIX OIEHOK MEHSIOTCH U3 I'oJia B I'OJI, HO ITKAJIa
PERTUHIOB OcTaeTCsi Hen3MeHHOU. TpebyeTcss BOCCTAHOBUTH PAHXKUPYIOINLYIO MOJIEb, HE 3aBH-
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