Определение области затенения радужки кластеризацией, основанной на локальных текстурных признаках^{*}

К. И. Талипов^{1,2}, *И. А. Матвеев*^{1,2}

kamiltalipov@gmail.com; ivanmatveev@mail.ru

¹Московский физико-технический институт, Россия, г. Долгопрудный, Институтский пер., 9 ²ФИЦ «Информатика и управление» РАН, Россия, г. Москва, ул. Вавилова, 40

Решается задача выделения точек затенения области радужки различными объектами. Исходными данными является изображение радужки глаза человека и окружности, аппроксимирующие границы зрачок-радужка и радужка-склера. В качестве метода решения предлагается использовать расчет локальных текстурных признаков и кластеризацию полученного вектора признаков. Целью работы является построение эффективного алгоритма, выделяющего точки затенения, и исследование возможности сегментации затенений радужки без априорно заданной модели ее текстуры. Работа алгоритма проиллюстрирована примерами на данных из баз изображений радужки.

Ключевые слова: локальные текстурные признаки; кластеризация; сегментация изображений

DOI: 10.21469/22233792.2.2.02

1 Введение

Распознавание радужки глаза — один из наиболее точных способов идентификации человека, имеющий выжные практические приложения. При использовании любого метода идентификации важна его точность. На практике изображение радужки глаза часто перекрывается (затенено) различными объектами: блики, веки, ресницы, тени от век и ресниц. Шумы такого рода снижают точность распознавания, поэтому задача выделения затененных областей изображения является важной для обеспечения высокой точности идентификации.

Можно выделить следующие основные используемые подходы к решению этой задачи: анализ направлений градиента, анализ границ радужки, кластеризация векторов локальных признаков точки, сравнение последовательных кадров одного и того же глаза. Более подробно методы описаны в работе [1]. Кроме того, в этой же работе производится сравнение эффективности различных алгоритмов нахождения затенений.

В качестве базового алгоритма предлагается метод, описанный в [2]. Для каждого пикселя области радужки рассчитывается набор локальных текстурных характеристик, которые составляют вектор признаков. На полученных векторах выполняется процедура кластеризации. Класс, содержащий максимальное число элементов, считается классом пикселей радужки, остальные — различного рода помехами. В [2] этот метод используется для сегментации областей радужки глаза. Результаты позволяют сделать вывод о возможности применения рассматриваемого метода для решения поставленной задачи. Однако разброс точности сегментирования говорит о необходимости подбора локальных текстурных характеристик и способа кластеризации полученных объектов. Целью работы является создание алгоритма опредения точек затенения без заранее заданной модели текстуры радужки.

^{*}Работа выполнена при финансовой поддержке РФФИ проект №15-01-05552

В работе [3] описан другой алгоритм выделения затененных областей, основанный на анализе освещенности блоков малого размера и отсеивания шумов посредством винеровского оценивания. Он показал точность в 98,52% на 756 тестах. Представляется разумным сравнить точность нахождения затененных точек для различных алгоритмов. В качестве изображений радужки для тестирования предлагается использовать изображения из баз данных [4–7].

2 Постановка задачи

Дано растровое монохроматическое изображение глаза человека I(x, y) являющееся матрицей целочисленных значений: $I(x, y) \in [0, 255]$, размером $W \times H$, т.е. $x \in [1; W]$, $y \in [1; H]$. Кроме того, известны окружности, аппроксимирующие границы зрачок-радужка и радужка-склера, определенные автоматическими методами [8]. Полагается, что кольцо, заключенное между этими окружностями, является радужкой. Каждая окружность задана своим центром и радиусом. На рис. 1 приведен пример изображения с выделенными окружностями. Область радужки часто перекрыта (затенена) различными объектами: блики, веки, ресницы, тени от век и ресниц. Требуется выделить точки затенения в области радужки.

Рассматривается задача классификации, в которой объектами являются точки изображения радужки глаза человека. Для каждой точки априорно не известен класс, к которому она принадлежит. Класс точек без помех обозначается меткой y = 0, затененых — y = 1. Каждой точке приписывается *n*-мерный набор локальных текстурных признаков $\mathbf{x}_i \in [0; 1]^n$, полученный на основе анализа изображения.

Предполагается, что точки радужки имеют «схожее» признаковое описание, «отличающееся» от характеристик затененных точек. Другими словами, считается, что выполнена гипотеза компактности. Понятие «схожести» удобно ввести в терминах функции расстояния, определенной на множестве объектов **X**:

$$\rho(\mathbf{x}_i, \mathbf{x}_k) : \mathbf{X} \times \mathbf{X} \longrightarrow \mathbb{R}_+$$

Исходя из вышеуказанного предположения для классификации точек используется кластеризация вектора локальных текстурных признаков. Класс, содержащий максимальное число точек, считается радужкой, остальные — точками затенения. Пусть функция

$$a: (\mathbf{u}, \mathbf{X}) \mapsto t \in \{0, 1\},\$$

где $\mathbf{u} \in \mathbf{X}$, а $y = [y_1, ..., y_M]^{\mathrm{T}} \in \{0, 1\}^M$ — вектор ответов, осуществляет класификацию выборки из M точек.

Для контроля качества алгоритма на изображении рассчитываются два критерия:

1) относительная ошибка первого рода — доля точек радужки, которые алгоритм ошибочно классифицировал как затененные:

$$\mathbf{E}_1(I) = \frac{1}{M_0} \sum_{m=1}^M [a(\mathbf{x}_m, \{\mathbf{X} \setminus \mathbf{x}_m\}) \neq y_m] [y_m = 0],$$

где M_0 — число незатенненых точек радужки в выборке **X**;

2) относительная ошибка второго рода — доля затенненых точек, которых алгоритм ошибочно классифицировал как точек радужки:

$$\mathbf{E}_2(I) = \frac{1}{M_1} \sum_{m=1}^M [a(\mathbf{x}_m, \{\mathbf{X} \setminus \mathbf{x}_m\}) \neq y_m] [y_m = 1],$$

где M_1 — число затененных точек в выборке **X**.

Качество решения определяется как минимум суммы относительных ошибок первого и второго рода по тестовому набору изображений, для которых известны области затенения. Также рассматривается доля точек, для которых алгоритм верно определил класс.

3 Метод решения

Для удобства работы с изображением производится полярное преобразование изображения, также называемое нормализацией, по методу, предложенному в работе [9] (рис. 2):

$$I(x(r,\theta), y(r,\theta)) \longrightarrow I(r,\theta).$$

Нормализованное изображение радужки $P(\theta, r)$ представляет собой прямоугольник $F \times R$ пикселей, где $P(\theta, r) \in [0, 255]$. Для удобства работы будем считать что по оси F точки зациклены, а по оси R отзеркалены, т.е. P(F + 1, R + 1) = P(1, R - 1). Так же производится повышение контрастности изображения путем изменения диапазона интенсивностей исходного изображения (метод *imadjust*).

В качестве локальных текстурных признаков точки используются:

Рис. 2 Полярное преобразование

• первый момент яркости в окрестности 7×7:

$$B_1(\theta, r) = \frac{1}{49} \sum_{\Delta \theta = -3}^{3} \sum_{\Delta r = -3}^{3} P(\theta + \Delta \theta, r + \Delta r);$$

• второй момент яркости в окрестности 7×7 :

$$B_2(\theta, r) = \frac{1}{49} \sum_{\Delta \theta = -3}^{3} \sum_{\Delta r = -3}^{3} P(\theta + \Delta \theta, r + \Delta r)^2;$$

• стандартное отклонение в окрестности 3×3 :

$$D(\theta, r) = \frac{1}{9} \left(\left(\sum_{\Delta \theta = -1}^{1} \sum_{\Delta r = -1}^{1} P(\theta + \Delta \theta, r + \Delta r)^2 \right) + \left(\sum_{\Delta \theta = -1}^{1} \sum_{\Delta r = -1}^{1} P(\theta + \Delta \theta, r + \Delta r) \right)^2 \right);$$

• перепад яркости (разница между максимальной яркостью и минимальной) в окрестности 3 × 3:

$$M(\theta, r) = \max_{(v,u)\in\Omega} P(v, u) - \min_{(v,u)\in\Omega} P(v, u),$$

где $\Omega = [\theta - 1; \theta + 1] \times [r - 1; r + 1];$

• расстояние до зрачка, нормированное на радиус радужки:

$$A(\theta, r) = \frac{d(\theta, r)}{R},$$

где $d(\theta, r)$ — евклидово расстояние до зрачка; R — радиус радужки;

- главные компонененты с 90%-ной значимостью для матрицы данных $V = \{ \boldsymbol{v}_{\boldsymbol{\theta}_r} | x \in [1, F], y \in [1, R] \}$, где $\boldsymbol{v}_{\boldsymbol{\theta}_r}$ это значения яркости в окрестности 7×7 точки (θ, r) , рассматриваемые как вектор;
- случайное марковское поле в окрестости 7×7. Для каждой точки окрестности считается индикатор $I(\theta, r) = [P(\theta, r) < A]$, где A — значение средней интенсивности. Обозначим за T(x, y) вероятность перехода при осущетвлении обхода из ячейки со значением индикатора x в клетку со значением индикатора y, где $x \in \{0, 1\}, y \in \{0, 1\}$. Тогда вектор (T(0, 0), T(0, 1), T(1, 0), T(1, 1)) будет марковским случайным полем.

Так как каждый признак имеет разные максимальные и минимальные значения, то происходит процедура нормировки, которая нормирует значения признаков так, чтобы они имели среднее значение, равное 0, и стандартное отклонение, равное 1. После нормировки векторов признаков для каждой точки производится кластеризация этих векторов с использование некоторой метрики. Для классификации объекта $\mathbf{u} \in \mathbf{X}$ предлагается применить следующие алгоритмы: метод k-средних и метод k-медоидов. Вычислительный эксперимент производится при параметре k, равном 2 и 3.

4 Вычислительный эксперимент

Вычислительный эксперимент проводился на двух тестовых выборках. В качестве первой используется $S_1 = 110$ изображений радужки, взятых случайным образом из баз данных [4–7]. Затенения на этих изображений имеют различный характер, площадь затенений и геометрическое расположение затенений также различны. На этих данных протестирована точность (доля правильно распознанных точек) алгоритма при использовании различных метрик и методов кластеризации. Вторая выборка представляет расширенную версию первой. Она состоит из $S_2 = 950$ изображений, взятых случайно из баз данных [4–7]. Показавшие наиболее высокие результаты на первой выборки алгоритмы тестируются на второй. Затенения на этих изображений имеют различный характер, площадь затенений и геометрическое расположение затенений также различны. На этих данных протестирована точность (доля правильно распознанных точек) алгоритма при использовании различных метрик и методов кластеризации.

В качестве функций расстояния между векторами признаков используются расстояния:

• квадратичное Евклидово расстояние:

$$d(\boldsymbol{u},\boldsymbol{v}) = \|\boldsymbol{u} - \boldsymbol{v}\|^2;$$

• расстояние Евклида (только для k-medoids):

$$d(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} - \boldsymbol{v}\|_{2}$$

• нормализованное евклидово расстояние (только для k-medoids):

$$d(\boldsymbol{u}, \boldsymbol{v}) = \sqrt{\sum_{i=1}^{n} \left(\frac{u_i}{s_i} - \frac{v_i}{s_i}\right)^2},$$

где s_i — стандартное отклонение i-й компоненты вектора по всей выборке;

• расстояние городских кварталов:

$$d(\boldsymbol{u},\boldsymbol{v}) = \sum_{i=1}^{n} |u_i - v_i|;$$

• метрика Минковского с p = 2 (только для k-medoids):

$$d(\boldsymbol{u},\boldsymbol{v}) = \left(\sum_{i=1}^{n} |u_i - v_i|^p\right)^{1/p};$$

• расстояние Чебышёва (только для k-medoids):

$$d(\boldsymbol{u}, \boldsymbol{v}) = \max_{i} |u_i - v_i|;$$

• расстояние Махаланобиса (только для k-medoids):

$$d(\boldsymbol{u}, \boldsymbol{v}) = \sqrt{(\boldsymbol{u} - \boldsymbol{v})V^{-1}(\boldsymbol{u} - \boldsymbol{v})^T},$$

где *V* — матрица ковариации;

• косинусное расстояние:

$$d(\boldsymbol{u}, \boldsymbol{v}) = 1 - \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|},$$

где $\boldsymbol{u}\cdot\boldsymbol{v}$ — скалярное произведение;

Машинное обучение и анализ данных, 2016. Том 2, № 2.

• корреляционное расстояние:

$$d(\boldsymbol{u},\boldsymbol{v}) = 1 - \frac{(\boldsymbol{u} - \overline{\boldsymbol{u}})(\boldsymbol{v} - \overline{\boldsymbol{v}})}{\|\boldsymbol{u} - \overline{\boldsymbol{u}}\| \|\boldsymbol{v} - \overline{\boldsymbol{v}}\|},$$

где \overline{u} — среднее значение элементов u.

Производится сравнение точности алгоритма в зависимости от выбранной метрики и метода кластеризации.

Результаты вычислительного эксперимента на первой тестовой выборки при k = 2 и 3 показаны в табл. 1 и 2 соответсвенно, где точность

$$Q = \frac{1}{S} \sum_{i=1}^{S} Q_i = \frac{1}{S} \sum_{i=1}^{S} Q_i \frac{W \times H - \mathbf{E}_1(I_i) - \mathbf{E}_2(I_i)}{W \times H},$$

усредненная по всем изображениям из тестовой выборки доля точек изображения радужки, распознанных алгоритмом корректно, а ΔQ — дисперсия точности.

Видно что k-means с расстоянием городских кварталов, k-medoids с нормализованное Евклидовом расстоянии и иерархическая с нормализованное Евклидовом расстоянии показали наиболее высокие результаты и именно они будут протестированы на второй выборки (табл. 3). Кроме того, для проверки адекватности оценки алгоритма средним значением качества на выборки были построены графики распределения качества (рис. 3).

Метод кластеризации	Расстояние	$Q \pm riangle Q$
k-means	квадратичное Евклидово	$0,707 \pm 0,006$
	городских кварталов	$0{,}683 \pm 0{,}008$
	косинусное	$0{,}718 \pm 0{,}008$
	корреляционное	$0{,}718 \pm 0{,}008$
<i>k</i> -medoids	нормализованное Евклидово	$0,721 \pm 0,008$
	квадратичное Евклидово	$0,703 \pm 0,006$
	Евклида	$0,\!685 \pm 0,\!008$
	городских кварталов	$0,\!684\pm0,\!008$
	Минковского	$0{,}680 \pm 0{,}008$
	Чебышёва	$0,\!685 \pm 0,\!008$
	Махаланобиса	$0,\!652\pm0,\!011$
	косинусное	$0{,}719 \pm 0{,}009$
	корреляционное	$0{,}718 \pm 0{,}009$
Иерархическая	нормализованное Евклидово	$0,704 \pm 0,035$
	квадратичное Евклидово расстояние	$0{,}696 \pm 0{,}067$
	расстояние Евклида	$0,\!670\pm0,\!033$
	расстояние городских кварталов	$0,\!671 \pm 0,\!084$
	метрика Минковского	$0,\!665 \pm 0,\!055$
	расстояние Чебышёва	$0,\!675 \pm 0,\!047$
	расстояние Махаланобиса	$0,\!649 \pm 0,\!061$
	косинусное расстояние	$0,\!662\pm0,\!072$
	корреляционное расстояние	$0,\!655\pm0,\!077$

Таблица 1 Результаты тестирования при k = 2

Метод кластеризации	Расстояние	$Q\pm riangle Q$
k-means	квадратичное Евклидово	$0,784 \pm 0,003$
	городских кварталов	$0{,}785 \pm 0{,}004$
	косинусное	$0,\!764\pm0,\!007$
	корреляционное	$0,\!760\pm0,\!007$
k-medoids	нормализованное Евклидово	$0,\!804 \pm 0,\!005$
	квадратичное Евклидово	$0,\!779\pm0,\!004$
	Евклида	$0,\!779\pm0,\!004$
	городских кварталов	$0{,}787 \pm 0{,}004$
	Минковского	$0{,}782 \pm 0{,}004$
	Чебышёва	$0,\!779\pm0,\!004$
	Махаланобиса	$0,\!775\pm0,\!006$
	косинусное	$0,\!762\pm0,\!007$
	корреляционное	$0{,}755 \pm 0{,}008$
Иерархическая	нормализованное Евклидово	$0{,}721 \pm 0{,}035$
	квадратичное Евклидово расстояние	$0{,}716 \pm 0{,}053$
	расстояние Евклида	$0{,}681 \pm 0{,}036$
	расстояние городских кварталов	$0{,}691 \pm 0{,}078$
	метрика Минковского	$0,\!675\pm0,\!049$
	расстояние Чебышёва	$0{,}681 \pm 0{,}052$
	расстояние Махаланобиса	$0,\!658 \pm 0,\!058$
	косинусное расстояние	$0,\!672 \pm 0,\!070$
	корреляционное расстояние	$0,\!662\pm0,\!073$

Таблица 2 Результаты тестирования при k = 3

Таблица 3 Результаты тестирования на большей выборке при k=3

Метод кластеризации	Расстояние	$Q \pm \bigtriangleup Q$
k-means	городских кварталов	$0,\!771 \pm 0,\!009$
k-medoids	нормализованное Евклидово	$0{,}792 \pm 0{,}011$
Иерархическая	нормализованное Евклидово	$0{,}703\pm 0{,}012$

Видно, что усредненное значение качества хорошо описывает оведение алгоритма в целом.

Иллюстрации различного качества распознавания точек затенения. Изображения рис. 4, *a* и 5, *a* — визуализация результата работы алгоритма в полярном представлении (черные точки — точки радужки, белые точки — точки затенения). Изображение рис. 4, *б* и 5, *б* — эталонный ответ в полярном представлении (черные точки — точки радужки, белые точки — точки затенения). Изображение рис. 4, *6* и 5, *6* — эталонный ответ в полярном представлении (черные точки — точки радужки, белые точки — точки затенения). Изображение рис. 4, *6* и 5, *6* содержит экспертную разметку (линии серого цвета) и точки, которые алгоритм считает точками затенения (белый цвет).

4.1 Заключение

Наибольшая точность распознавания в $79,2\% \pm 1,1\%$ получена при использовании нормализованного Евклидова расстояния как метрики и k-medoids, как метода кластеризации при параметре k = 3. Вектор локальных текстурных признаков состоял из первых и вто-

Рис. 3 Распределение точностей некоторых запусков

Рис. 4 Пример высокой точности алгоритма

Рис. 5 Пример низкой точности алгоритма

рых моментов яркости в окрестности, стандартное отклонение в окрестности, перепад яркости в окрестности, главные компоненты в окрестности, марковское поле в окрестности и расстояние до зрачка, нормированное на радиус радужки.

Из полученых результатов можно сделать вывод о возможности использования метода кластеризации векторов локальных признаков для решения задачи нахождения точек затенения изображения глаза. Однако невысокая точность распознавания по сравнению с алгоритмом, представленным в работе [3], делает необходимым дальнейшее изучение способов улучшения алгоритма. Исходя из этого факта и из зависимости точности распознавания от метода кластеризации и метрики, представляется разумным провести больше вычислительных экспериментов, взяв дополнительные локальные текстурные признаки и проверить точность распознавания на различных методах кластеризации. Кроме того, стоит протестировать работу алгоритма при неравных весах признаков. Также заметна взаимосвязь точности алгоритма и количества кластеров, на которые происходит класстеризация. Поэтому стоит рассмотреть работу алгоритма при более высоких значениях параметра k.

Литература

- Min T.-H., Park R.-H. Comparison of eyelid and eyelash detection algorithms for performance improvement of iris recognition // Pattern Recogn. Lett., 2009. Vol. 30. No. 12. P. 1138–1143. doi: 10.1109/ICIP.2008.4711740.
- Proenca H., Alexandre L. Iris segmentation methodology for non-cooperative recognition // IEE Proc. Vis. Image Sign., 2006. Vol. 153. P. 199–205. doi: 10.1049/ip-vis:20050213.

- [3] Xu G., Zhang Z., Ma Y. Improving the performance of iris recognition system using eyelids and eyelashes detection and iris image enhancement // IEEE Conference (International) on Cognitive Informatics Proceedings, 2006. P. 871–876. doi: 10.1109/COGINF.2006.365606.
- [4] Chinese Academy of Sciences Institute of Automation. Iris image database, ver. 3. 2005. http://biometrics.idealtest.org/dbDetailForUser.do?id=3.
- [5] Monro D. M., Rakshit S., Zhang D. Iris image database. U.K.: University of Bath, 2005. http://www.bath.ac.uk/elec-eng/research/sipg/irisweb/.
- [6] MMU Iris Image Database. Multimedia University. http://pesonna.mmu.edu.my/ccteo/.
- [7] Phillips P., Scruggs W., O'Toole A., et al. FRVT 2006 and ICE 2006 large-scale experimental results // IEEE Trans. Pattern Anal., 2010. Vol. 5. No. 32. P. 831–846. doi: 10.1109/TPAMI. 2009.59.
- [8] Ганькин К.А., Гнеушев А.Н., Матвеев И.А. Сегментация изображения радужки глаза, основанная на приближенных методах с последующими уточнениями // Известия РАН. Теория и системы управления, 2014. № 2. С. 80–94. doi: 10.7868/S0002338814020097.
- [9] Daugman J. High confidence visual recognition of persons by a test of statistical independence // IEEE Trans. Pattern. Anal., 1993. Vol. 15. No. 11. P. 1148–1161. doi: 10.1109/34.244676.

Поступила в редакцию 27.08.2016

Eyelids and eyelash detection based on clusterization of vector of local features*

K. I. Talipov^{1,2} and I. A. $Matveev^{1,2}$

kamiltalipov@gmail.com; ivanmatveev@mail.ru

¹Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow, Russia ²Federal Research Center "Computer Science and Control" of RAS, 44/2 Vavilova Str., Moscow,

Russia

An attempt has been done to solve the problem of extracting areas where the iris is occluded by various objects. Initial data consist of an image of iris and a circle approximating the boundary between the sclera, the iris, and the pupil. Calculation of local texure features and clusterizing the data based on the extracted information is proposed as a solution method. Two main goals of this particular work are to introduce an effective algorithm for occluded point detection and to study the possibility of their segmentation without a preset texture model. The algorithm's performance is illustrated with the results on various iris image datasets.

Keywords: local texture feature; clustering; image segmentation

DOI: 10.21469/22233792.2.2.02

References

- Min, T.-H., and R.-H. Park. 2009. Comparison of eyelid and eyelash detection algorithms for performance improvement of iris recognition. *Pattern Recogn. Lett.* 30(12):1138–1143. doi: 10.1109/ICIP.2008.4711740.
- [2] Proenca, H., and L. Alexandre. 2006. Iris segmentation methodology for non-cooperative recognition. IEE Proc. Vis. Image Sign. 153:199–205. doi: 10.1049/ip-vis:20050213.

^{*}The research was supported by the Russian Foundation for Basic Research (grant 15-01-05552).

- [3] Xu, G., Z. Zhang, and Y. Ma. 2006. Improving the performance of iris recognition system using eyelids and eyelashes detection and iris image enhancement. *IEEE Conference (International) on Cognitive Informatics Proceedings.* 871–876. doi: 10.1109/COGINF.2006.365606.
- [4] Chinese Academy of Sciences Institute of Automation. 2005. Iris image database, ver. 3. Available at: http://biometrics.idealtest.org/dbDetailForUser.do?id=3 (accessed November 18, 2016).
- [5] Monro, D. M., S. Rakshit, and D. Zhang. 2005. Iris image database. U.K.:University of Bath. Available at: http://www.bath.ac.uk/elec-eng/research/sipg/irisweb/ (accessed August 26, 2008).
- [6] MMU Iris Image Database. Multimedia University. Available at: http://pesonna.mmu.edu. my/ccteo/ (accessed October 13, 2013).
- [7] Phillips, P., W. Scruggs, A. O'Toole, et al. 2010. FRVT 2006 and ICE 2006 large-scale experimental results. IEEE Trans. Patter. Anal. 5(32):831–846. doi: 10.1109/TPAMI.2009.59.
- [8] Gankin, K. A., A. N. Gneushev, and I. A. Matveev. 2014. Segmentatsiya izobrazheniya raduzhki glaza, osnovannaya na priblizhennykh metodakh s posleduyushchimi utochneniyami. *Izvestiya RAN. Teoriya i sistemy upravleniya* [Herald of RAS. Theory and Control Systems] 2:80–94. doi: 10.7868/S0002338814020097.
- Daugman, J. 1993. High confidence visual recognition of persons by a test of statistical independence. *IEEE Trans. Pattern Anal.* 15(11):1148–1161. doi: 10.1109/34.244676.

Received August 27, 2016