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Background: Gaussian processes (GP) provide an elegant and effective approach to learn-
ing in kernel machines. This approach leads to a highly interpretable model and allows using
the Bayesian framework for model adaptation and incorporating the prior knowledge about
the problem. The GP framework is successfully applied to regression, classification, and di-
mensionality reduction problems. Unfortunately, the standard methods for both GP-regression
and GP-classification scale as O(n3), where n is the size of the dataset, which makes them
inapplicable to big data problems. A variety of methods have been proposed to overcome this
limitation both for regression and classification problems. The most successful recent meth-
ods are based on the concept of inducing inputs. These methods reduce the computational
complexity to O(nm2) where m is the number of inducing inputs with m typically much less
than n. The present authors focus on classification. The current state-of-the-art method for
this problem is based on stochastic optimization of an evidence lower bound (ELBO) that de-
pends on O(m2) parameters. For complex problems, the required number of inducing points m
is fairly big, making the optimization in this method challenging.
Methods: The structure of variational lower bound that appears in inducing input GP clas-
sification has been analyzed. First, it has been noted that using quadratic approximation of
several terms in this bound, it is possible to obtain analytical expressions for optimal values of
most of the optimization parameters, thus sufficiently reducing the dimension of optimization
space. Then, two methods have been provided for constructing necessary quadratic approxi-
mations: one is based on Jaakkola–Jordan bound for logistic function and the other is derived
using Taylor expansion.
Results: Two new variational lower bounds have been proposed for inducing input GP classi-
fication that depend on a number of parameters. Then, several methods have been suggested
for optimization of these bounds and the resulting algorithms have been compared with the
state-of-the-art approach based on stochastic optimization. Experiments on a bunch of clas-
sification datasets show that the new methods perform the same or better results than the
existing one. However, new methods do not require any tunable parameters and can work in
settings within a big range of n and m values, thus significantly simplifying training of GP
classification models.
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1 Introduction

Gaussian processes provide a prior over functions and allow finding complex regularities in data.
Gaussian processes are successfully used for classification/regression problems and dimension-
ality reduction [1]. In this work, only the classification problem is considered.

Standard methods for GP-classification scale as O(n3) where n is the size of the training
dataset. This complexity makes them inapplicable to big data problems. Therefore, a variety
of methods were introduced to overcome these limitations [2–4]. The focus of the paper is
on the methods based on so-called inducing inputs. Paper [5] introduces the inducing inputs
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approach for training GP models for regression. This approach is based on variational inference
and proposes a particular lower bound for marginal likelihood (evidence). This bound is then
maximized with regard to parameters of kernel function of the GP, thus fitting the model
to data. The computational complexity of this method is O(nm2) where m is the number of
inducing inputs used by the model and is assumed to be substantially smaller than n. Paper [6]
develops these ideas by showing how to apply stochastic optimization to the ELBO similar to
the one used in [5]. However, a new lower bound depends on O(m2) variational parameters that
makes optimization in the case of big m challenging.

Paper [7] shows how to apply the approach from [6] to the GP-classification problem. It
provides a lower bound that can be optimized with regard to kernel parameters and variational
parameters using stochastic optimization. However, the lower bound derived in [7] is intractable
and has to be approximated via Gauss–Hermite quadratures or other integral approximation
techniques. This lower bound is also fit for stochastic optimization and depends on O(m2)
parameters.

In this work, a new approach was developed for training inducing input GP models for
classification problems. Here, a structure of variational lower bound from [7] was analyzed. It
has been noted that using quadratic approximation of several terms in this bounds, it is possible
to obtain analytical expressions for optimal values of the most of optimization parameters, thus
sufficiently reducing the dimension of optimization space. So, two methods have been provided
for constructing necessary quadratic approximations: one based on Jaakkola–Jordan bound for
logistic function and the other derived using Taylor expansion.

The paper is organized as follows. In section 2, the standard GP-classification framework
and its main limitations are described. In section 3, the concept of inducing inputs is introduced
and the ELBO of [7] is derived. Section 4 contains the main contribution — two new tractable
ELBO and different methods for their optimization. Section 5 provides experimental comparison
of new methods with the existing approach from [7], The last section concludes the paper.

2 Gaussian processes classification model

In this section, classic GP framework and its application for classification problems (for detailed
discussion, see [1]) are reviewed.

2.1 Gaussian process definition

A GP is a collection of random variables, any finite number of which has a joint Gaussian
distribution.

Here, only the processes that take place in a finite-dimensional real space Rd are considered.
In this case, f is the GP if for any k, for any t1, . . . , tk ∈ R

d, the joint distribution

(f(t1), . . . , f(tk))
T ∼ N (mt,Kt)

for some mt ∈ R
k and Kt ∈ R

k×k.
Mean mt of this distribution is defined by the mean function m : Rd → R of the GP:

mt = (m(t1), . . . , m(tk))
T.

Similarly, the covariance matrixKt is defined by the covariance function k : Rd × Rd → R:

Kt =











k(t1, t1) k(t1, t2) · · · k(t1, tn)
k(t2, t1) k(t2, t2) · · · k(t2, tn)

...
...

...
...

k(tn, t1) k(tn, t2) · · · k(tn, tn)











. (1)
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Figure 1 One-dimensional GP

Then, it is straightforward that a GP is completely defined by its mean and covariance
functions. Let us use the following notation:

f ∼ GP(m(·), k(·, ·)) .
While the mean function m can be an arbitrary real-valued function, the covariance function k
has to be a kernel, so that the covariance matrices (1) it implies are symmetric and positive
definite.

Figure 1 shows an example of a one-dimensional GP. The dark blue line is the mean function
of the process, the light blue region is the 3σ-region, and different color curves are the samples
from the process.

2.2 Gaussian process classification

Now, let us apply GP to a binary classification problem. Suppose, one has a dataset {(xi, yi) | i =
= 1, . . . , n} where xi ∈ Rd, yi ∈ {−1, 1}. Denote the matrix comprised of points x1, . . . ,xn by
X ∈ Rn×d and the vector of corresponding class labels y1, . . . , yn by y ∈ {−1, 1}n. The task is
to predict the class label y∗ ∈ {−1, 1} at a new point x∗ ∈ Rd.

Let us consider the following model. First, let us introduce a latent function f : Rd → R

and put a zero-mean GP prior over it:

f ∼ GP(0, k(·, ·))
for some covariance function k(·, ·). For now, the covariance function is supposed to be fixed.

Then, let us consider the probability of the object x∗ belonging to positive class to be equal
to σ(f(x∗)) for the chosen sigmoid function σ:

p(y∗ = +1 |x∗) = σ(f(x∗)). (2)

In this work, the logistic function σ(z) = (1+exp(−z))−1 is used; however, one could use other
sigmoid functions as well.

The probabilistic model for this setting is given by

p(y, f |X) = p(y | f)p(f |X) = p(f |X)

n
∏

i=1

p(yi | fi) (3)
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Figure 2 Gaussian process classification graphical model

where p(yi | fi) is the sigmoid likelihood (2) and p(f |X) = N (f | 0, K(X,X)) is the GP prior.
The corresponding probabilistic graphical model is given in Fig. 2.

Now, inference in model (3) can be done in two steps. First, for new data point x∗, one
should find the conditional distribution of the corresponding value of the latent process f∗. This
can be done as follows:

p(f∗ |y,X,x∗) =

∫

p(f∗ | f ,X,x∗)p(f |y,X) df . (4)

Second, the probability that x∗ belongs to the positive class is obtained by marginalizing over
the latent variable f∗:

p(y∗ = +1 |y,X,x∗) =

∫

σ(f∗)p(f∗ |y,X,x∗) df∗ . (5)

Unfortunately, both integrals (4) and (5) are intractable since they involve a product of
sigmoid functions and normal distributions. Thus, one has to use some integral-approximation
techniques to estimate the predictive distribution.

For example, one can use Laplace approximation method, which builds a Gaussian approx-
imation q(f |y,X) to the true posterior p(f |y,X). Substituting this Gaussian approximation
back into (4), one obtains a tractable integral. The predictive distribution (5) remains in-
tractable but since this is a one-dimensional integral, it can be easily estimated by quadratures
or other techniques. The more detailed derivation of this algorithm and another algorithm,
based on Expectation Propagation, can be found in [1].

Computational complexity of computing the predictive distribution both for the Laplace
approximation method and Expectation Propagation scales as O(n3) since they both require
to invert n×n matrix K(X,X). In section 3, the concept of inducing points aimed to reduce
this complexity is described.

2.3 Model adaptation

In the previous subsection, it was described how to fit a GP to the data in the classification
problem. However, only GP with fixed covariance functions have been considered. This model
can be rather limiting.

Most of the popular covariance functions have a set of parameters, which are referred to
here as covariance (or kernel) hyperparameters. For example, the squared exponential covariance
function

kSE(x,x
′; θ) = σ2 exp

(

−‖x− x′‖2
l2

)
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has two parameters θ: variance σ and length-scale l. An example of a more complicated popular
covariance function is the Matern function, given by

kMatern(x,x
′; θ) =

21−ν

Γ(ν)

(√
2ν‖x− x′‖

l

)ν

Kν

( √
2ν

‖x− x′‖ l
)

,

with two positive parameters θ = (ν, l). Here, Kν is the modified Bessel function.
In order to get a good model for the data, one should find a good set of kernel hyperpa-

rameters θ. Bayesian paradigm provides a way of tuning the kernel hyperparameters of the
GP-model through maximization of the model evidence (marginal likelihood) that is given by

p(y |X, θ) =

∫

p(y | f)p(f |X, θ) df → max
θ

. (6)

However, this integral is intractable for the model (3) since it involves a product of sigmoid
functions and normal distribution. In subsequent sections, several methods to construct a vari-
ational lower bound to the marginal likelihood will be described. Maximizing this lower bound
with respect to kernel hyperparameters θ, one could fit the model to the data.

3 Variational inducing point Gaussian process classification

In the previous section, it was shown how GP can be applied to solve classification problems.
The computational complexity of GP for classification scales as O(n3) that makes this method
inapplicable to big data problems.

A number of approximate methods have been proposed in the literature for both GP-
regression and GP-classification [2–4]. In this paper, the methods based on the concept of
inducing inputs are considered. These methods construct an approximation based on the values
of the process at some m < n points. These points are referred to as inducing points. The idea
is the following. The hidden GP f corresponds to some smooth low-dimensional surface in Rd.
This surface can, in fact, be well approximated by another GP with properly chosen m training
points Z = (z1, . . . , zm)

T ∈ Rm×d and process values at that points u = (u1, . . . , um)
T (inducing

inputs). Then, predictions of this new process at training points are used for constructing
approximate posterior distribution for p(f |y,X). The positions Z of inducing inputs can be
learned within the training procedure. However, for simplicity, in the following, the dataset X
will be clusterized into m clusters using K-means and Z will be chosen to be the cluster centers.
In practice, it is observed that this approach works well almost in all the cases.

3.1 Evidence lower bound

In the following, a variational approach will be used for solving maximum evidence problem (6).
In this approach, an ELBO is introduced that is simpler to compute than the evidence itself.
Then, this lower bound is maximized with regard to kernel hyperparameters θ and additional
variational parameters used for constructing the lower bound.

Let us consider the following augmented probabilistic model:

p(y, f ,u |X,Z) = p(y | f)p(f ,u |X,Z) =

n
∏

i=1

p(yi | fi)p(f ,u |X,Z). (7)

The graphical model for the model (7) is shown in Fig. 3. Note that marginalizing the model (7)
with regard to u gives the initial model (3).
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Figure 3 Gaussian process classification graphical model

Let us denote the covariance matrix comprised of pairwise values of the covariance func-
tion k(·, ·) on the points Z by K(Z,Z) = Kmm ∈ Rm×m. Similarly, let us define Knn

= K(X ,X) ∈ Rn×n and Knm = K(X,Z) = KT

mn ∈ Rn×m.
As u and f are generated from the same GP with zero-mean prior:

p(f ,u |X,Z) = N ([f ,u] | [0, 0], K([X,Z], [X,Z])) ;

p(u |Z) = N (u | 0,Kmm) ;

p(f |u,X,Z) = N (f |KnmK
−1
mmu, K̃) (8)

where K̃ = Knn−KnmK
−1
mmKmn. In the following, for simplicity, the dependence onX and Z

will be omitted in all formulas. Note that here, optimization is not considered with regard to
these values.

Applying the standard variational lower bound (see, for example, [8]) to the augmented
model (7), one obtains the following inequality:

log p(y) > Eq(u,f) log
p(y,u, f)

q(u, f)
= Eq(u,f) log p(y | f)−KL (q(u, f )‖p(u, f))

for any distribution q(u, f). This inequality becomes equality for the true posterior distribution
q(u, f ) = p(u, f |y). Next, let us restrict the variational distribution q(u, f) to be of the form

q(u, f) = p(f |u)q(u) (9)

where q(u) = N (u |µ,Σ) for some µ ∈ Rm, Σ ∈ Rm×m, and p(f |u) is determined by (8).
This is the key approximation step in inducing points approach for GP. The chosen fam-
ily (9) subsumes that with large enough m, all information about the hidden process val-
ues f at training points can be successfully restored from the values u at inducing inputs, i. e.,
p(f |u,y) ≈ p(f |u).

Form (9) of the variational distribution implies a Gaussian marginal distribution:

q(f) =

∫

p(f |u)q(u) du = N
(

f |KnmK
−1
mmµ,Knn +KnmK

−1
mm(Σ−Kmm)K

−1
mmKmn

)

.
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As log p(y | f) depends on u only through f , the expectation

Eq(u,f) log p(y | f) = Eq(f) log p(y | f) =
n
∑

i=1

Eq(fi) log p(yi | fi)

where q(fi) is the marginal distribution of q(f ):

q(fi) = N
(

fi |kT

iK
−1
mmµ,Kii + kT

iK
−1
mm(Σ−Kmm)K

−1
mmki

)

= N
(

fi |mi, S
2
i

)

(10)

and ki is the ith column of matrix Kmn.
Finally,

KL (q(u, f)‖p(u, f)) = KL (q(u)p(f |u)‖p(u)p(f |u)) = KL (q(u)‖p(u)) .

Combining everything back together, one obtains the ELBO:

log p(y) >
n
∑

i=1

Eq(fi) log p(yi | fi)−KL (q(u)‖p(u)) . (11)

Note that the KL-divergence term in the lower bound (11) can be computed analytically
since it is a KL-divergence between two normal distributions. In order to compute the expec-
tations Eq(fi) log p(yi | fi), one has to use integral approximating techniques.

The ELBO (11) can be maximized with respect to variational parameters µ, Σ, and kernel
hyperparameters. Using the optimal distribution q(u), one can perform predictions for new
data point x∗ as follows:

p(f∗ |y) =
∫

p(f∗ |u, f )p(u, f |y) dudf ≈
∫

p(f∗ |u, f )q(u, f ) dudf

=

∫

p(f∗ |u, f )p(f |u)q(u) dudf =

∫

p(f∗ |u)q(u) du .

The last integral is tractable since both terms p(f∗ |u) and q(u) are the normal distributions.
Note that in case of regression with Gaussian noise, the distributions p(yi | fi) are the

Gaussians and, thus, the expectations Eq(fi) log p(yi | fi) are tractable. Paper [6] suggests maxi-
mization of the lower bound (11) with respect to µ, Σ, and covariance hyperparameters with
stochastic optimization techniques for GP-regression.

3.2 Stochastic Variational Inference method

In case of classification, one cannot analytically compute the expectations Eq(fi) log p(yi | fi) in
the lower bound (11). However, the expectations are the one-dimensional Gaussian integrals
and can thus be effectively approximated with a range of techniques. In paper [7], Gauss–
Hermite quadratures are used for this purpose. Note that the lower bound (11) has the form
“sum over training objects.” Hence, this bound can be maximized using stochastic optimization
techniques. Paper [7] suggests to maximize the lower bound (11) with respect to the variational
parameters µ,Σ, and kernel hyperparameters θ using stochastic optimization. This method is
referred to as svi (Stochastic Variational Inference) method. The lower bound (11) and all its
derivatives can be computed in O(nm2 +m3). This complexity has a linear dependence on n;
hence, svi method can be applied for the case of big training data.
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4 Tractable evidence lower bound for Gaussian process classification

In the previous section, the svi method has been described. It is based on stochastic optimiza-
tion of the lower bound (11) for marginal likelihood and the lower bound itself is computed in
O(nm2). But the bound depends on O(m2) parameters which makes the optimization problem
hard to solve when a big number of inducing points is needed.

For GP-regression, the situation is similar. Paper [6] describes a method analogical to the svi
method for classification. The only difference is that the lower bound becomes tractable in case
of regression. Then, the paper [5] tries to solve the problem of big O(m2) number of parameters
in the algorithm from [6] in the following way. In case of regression, the lower bound (11)
can be analytically optimized with respect to variational parameters µ and Σ. Doing so and
substituting the optimal values back into the lower bound, one can obtain a new lower bound
to the marginal likelihood that depends solely on kernel hyperparameters θ. This simplifies
the optimization problem by dramatically reducing the number of optimization parameters.
Unfortunately, this new bound does not have a form of “sum over objects;” hence, stochastic
optimization methods are no longer applicable here. However, in their experiments, the present
authors have found that even for fairly big datasets, the method from [5] outperforms [6] despite
the lack of stochastic optimization.

In the following subsection, an approach similar to the method of [5] is devised for the case
of classification. A tractable ELBO is provided and it is analytically maximized with respect to
variational parameters µ and Σ. Substituting the optimal values of these parameters back into
the lower bound, one obtains a new lower bound that depends only on kernel hyperparameters θ.

4.1 Global evidence lower bound

In order to derive a tractable lower bound for (11), let us seek a quadratic approximation to the
log-logistic function log p(yi | fi) = log σ(yifi) where log σ(t) = − log(1 + exp(−t)). Paper [9]
provides a global parametric quadratic lower bound for this function:

log σ(t) >
t

2
− ξt

2
+ log σ(ξt)− λ(ξt)(t2 − ξ2t ), ∀t

where λ(ξt) = tanh(ξt)/(4ξt) and ξt ∈ R is the parameter of the bound. This bound is tight
when t2 = ξ2t .

Substituting this bound back to (11) with separate values ξ = {ξi | i = 1, . . . , n} for every
data point, one obtains a tractable lower bound:

log p(y) >
n
∑

i=1

Eq(fi) log p(yi|fi)−KL (q(u)‖p(u)) =
n
∑

i=1

Eq(fi) log σ(yifi)−KL (q(u)‖p(u))

>

n
∑

i=1

(

Eq(fi)

[

log σ(ξi) +
yifi − ξi

2
− λ(ξi)

(

f 2
i − ξ2i

)

])

−KL (q(u)‖p(u))

=
n
∑

i=1

(

log σ(ξi)−
ξi
2
+ λ(ξi)ξ

2
i

)

+
1

2
µTK−1

mmKmny

− tr
(

Λ(ξ)
(

Knn +KnmK
−1
mm (Σ−Kmm)K

−1
mmKmn

))

− µTK−1
mmKmnΛ(ξ)KnmK

−1
mmµ−KL (q(u)‖p(u)) = J(µ,Σ, ξ, θ)
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where

Λ(ξ) =











λ(ξ1) 0 · · · 0

0 λ(ξ2)
. . . 0

...
. . .

. . .
...

0 0 · · · λ(ξn)











.

Differentiating J with respect to µ and Σ and setting the derivatives to zero, one obtains:

Σ̂(ξ) =
(

2K−1
mmKmnΛ(ξ)KnmK

−1
mm +K−1

mm

)−1
; (12)

µ̂(ξ) =
1

2
Σ̂(ξ)K−1

mmKmny. (13)

Substituting the optimal values of variational parameters back to the lower bound J and
omitting the terms not depending on θ and ξ, one obtains a compact lower bound:

Ĵ(θ, ξ) =

n
∑

i=1

(

log σ(ξi)−
ξi
2
+ λ(ξi)ξ

2
i

)

+
1

8
yTKnmB

−1Kmny

+
1

2
log |Kmm| −

1

2
log |B| − tr

(

Λ(ξ)K̃
)

where

K̃ = Knn −KnmK
−1
mmKmn;

B = 2KmnΛ(ξ)Knm +Kmm.

In the following, three different methods will be considered for maximizing the lower
bound Ĵ(θ, ξ).

Note that given the values of µ, Σ, and θ, one can maximize J(µ,Σ, ξ, θ) with respect to ξ

analytically. The optimal values for ξ are given by

ξ2i = Eq(f)f
2
i = m2

i + S2
i . (14)

The values mi and Si were defined in (10). In the first method, the analytical formulas (14)
are used to recompute the values of ξ and the gradient-based optimization is used to maximize
the bound with respect to θ. The pseudocode is given in Algorithm 1. Let us refer to this
method as vi-JJ where JJ stands for Jaakkola and Jordan, the authors of [9]. Note that the
computational complexity of one iteration of this method is O(nm2), the same as for the svi

method.
The second method uses gradient-based optimization to maximize Ĵ with respect to both θ

and ξ. Note that in this method, it is not necessary to recompute µ and Σ at each iteration
which makes the methods iterations empirically faster for big values of m. Let us refer to this
method as vi-JJ-full.

Finally, vi-JJ-hybrid is a combination of the two methods described above. The general
scheme of this method is the same as vi-JJ. In the vi-JJ-hybrid method, analytical formulas
are used to recompute ξ as is done in the vi-JJ method at stage 1 but at stage 2, gradient-
based optimization is used with respect to both ξ and θ. The virtues of this method will be
described in the experiments section.
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Algorithm 1 vi-JJ method

Input: nupd, nfun

Output: θ, µ, Σ
µ, Σ← 0, I
repeat
µ̃, Σ̃← µ, Σ
for j ← 1, . . . , nupd : // stage 1: updating µ, Σ, ξ

mt, St ← kT

tK
−1
mmµ̃, Ktt + kT

tK
−1
mm

(

Σ̃−Kmm

)

K−1
mmkt, t = 1, . . . , n

ξ̃t
2 ← m2

t + S2
t , t = 1, . . . , n

µ̃, Σ̃← µ̂
(

ξ̃
)

, Σ̂
(

ξ̃
)

// see (12), (13)

µ, Σ, ξ ← µ̃, Σ̃, ξ̃

θ = minimize
(

Ĵ (·, ξ)
)

, method=’L-BFGS-B’, maxfun=nfun // stage 2: updating θ

until convergence

4.2 Tractable local approximation to the evidence lower bound

Another way to obtain a tractable approximation to the lower bound (11) is to use a local
quadratic approximation for the log-logistic function log p(yi | fi). In this way, let us perform
a second-order Taylor expansion of this function at points ξ = {ξi | i = 1, . . . , n}:

log p(yi | fi) ≈ − log(1+exp(−yiξi))+
yi

1 + exp(yiξi)
(fi− ξi)−

y2i exp(yiξi)

2(1 + exp(yiξi))2
(fi− ξi)2. (15)

The following derivation is analogical to the derivation in the previous section. Substituting
approximation (15) into the lower bound (11), one obtains

log p(y) >

n
∑

i=1

Eq(fi) log p(yi|fi)−KL (q(u)‖p(u))

≈ −
n
∑

i=1

log(1 + exp(−yiξi)) + ϕ(ξ)T
(

KnmK
−1
mmµ− ξ

)

− tr
(

Ψ(ξ)
(

Knn +KnmK
−1
mm(Σ−Kmm)K

−1
mmKmn

))

−
(

KnmK
−1
mmµ− ξ

)

T

Ψ(ξ)
(

KnmK
−1
mmµ− ξ

)

−1
2

(

log
|Kmm|
|Σ| −m+ tr

(

K−1
mmΣ

)

+ µTK−1
mmµ

)

.

Here, Ψ(ξ) is the diagonal matrix

Ψ(ξ) =











ψ(ξ1) 0 · · · 0

0 ψ(ξ2)
. . . 0

...
. . .

. . .
...

0 0 · · · ψ(ξn)











where

ψ(ξi) =
y2i exp(yiξi)

2(1 + exp(yiξi))2
.
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Differentiating the approximate bound with respect to µ, Σ, and ξ and setting the deriva-
tives to zero, one obtains the following formulas for optimal values of these parameters:

Σ̂(ξ) =
(

2K−1
mmKmnΨ(ξ)KnmK

−1
mm +K−1

mm

)−1
; (16)

µ̂(ξ) = Σ̂(ξ)K−1
mmKmnv(ξ); (17)

ξi = mi.

Here,
v(ξ) = ϕ(ξ) + 2Ψ(ξ)ξ

and ϕ(ξ) is the vector composed of

ϕ(ξ)i =
yi

1 + exp(yiξi)
.

Substituting the optimal values for µ and Σ given by (16) and (17) back into the ap-
proximate bound and omiting the terms that do not depend on θ, one obtains the following
approximate lower bound:

J̃ξ =
1

2
v(ξ)TKnmB

−1Kmnv(ξ) +
1

2
log |Kmm| −

1

2
log |B| − tr

(

Ψ(ξ)K̃
)

(18)

where

B = 2KmnΨ(ξ)Knm +Kmm.

Note that the lower bound (18) is not a global lower bound for the log-evidence log p(y).
However, locally, a good approximation of the ELBO (11) has been got.

For maximizing the approximate lower bound (18), let us consider a method, analogical to
vi-JJ. In order to specify this method, let us simply substitute the bound Ĵ(·, ξ) by J̃ξ in the
second stage in Algorithm 1. Let us refer to this method as vi-Taylor. The computational
complexity of one iteration of this method is, once again, O(nm2).

5 Experiments

In this section, the derived vi-JJ, vi-Taylor, vi-JJ-full, and vi-JJ-hybrid methods will
be empirically compared with svi. Below, the setting of the experiments is described and their
results are discussed.

5.1 Experimental setting

In the experiments, there have been compared 5 methods for variational inducing point GP-
classification:

– svi-AdaDelta uses the AdaDelta optimization method for maximization of the lower
bound (11) as it is done in paper [7];

– vi-JJ was described in subsection 4.1;
– vi-Taylor was described in subsection 4.2;
– vi-JJ-full was described in subsection 4.1; and
– vi-JJ-hybrid was described in subsection 4.1.

Also, the present authors have made an attempt to use deterministic L-BFGS-B optimiza-
tion method for maximizing ELBO (11), but it worked substantially worse than all the other
methods. Note that all the methods have the same complexity of epochs O(nm2). The table
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Methods outline

Method
Numerically optimized

variables
Analytically optimized

variables

svi-AdaDelta θ, µ ∈ Rm, Σ ∈ Rm×m

vi-JJ, vi-Taylor θ µ ∈ R
m, Σ ∈ R

m×m, ξ ∈ R
n

vi-JJ-hybrid θ, ξ ∈ R
n µ ∈ R

m, Σ ∈ R
m×m, ξ ∈ R

n

vi-JJ-full θ, ξ ∈ Rn µ ∈ Rm, Σ ∈ Rm×m

shows which variables are optimized numerically and which are optimized analytically for each
method.

In the present experiments, the lower bound was not optimized with respect to the posi-
tions Z of the inducing points. Instead, K-means clustering procedure with K equal to the
number m of inducing inputs was used and clusters centers were taken as Z. Also, the squared
exponential covariance function (see section 2) was used in all experiments with a Gaussian
noise term.

The stochastic method svi-AdaDelta requires the user to manually specify the learning
rate and the batch size for the optimization method. For the former, it was necessary to run
the method with different learning rates and to choose the value that resulted in the fastest
convergence. The learning rates have been used from a fixed grid with a step of 0.1. It always
happened that for the largest value from the grid, the method diverged and for the smallest,
the method converged slower than for some medium value, verifying that the optimal learning
rate was somewhere in the range. To choose the batch size, the following convention was used.
For small german and svmguide datasets, the batch size was set to 50. For other datasets,
approximately n/100 was used as the batch size where n is the size of the training set.

For the vi-JJ, vi-Taylor, and vi-JJ-hybrid in all of the experiments on every itera-
tion, the values of ξ, µ, and Σ were recomputed three times (nupd = 3 in Algorithm 1). To
tune θ, on every iteration, L-BFGS-B optimization method was run constrained to do not more
than 5 evaluations of the lower bound and its gradient. It was found that these values of the
parameters work well for all the experimented datasets.

For the svi-AdaDelta method, optimization with regard to Cholesky factor of the matrix Σ
was used to maintain its positive definiteness as described in [7]. AdaDelta optimization method
implementation from the climin toolbox [10] was used as is done in the original paper.

For every dataset, the present authors experimented with a number of inducing points to
verify that the results of the methods are close to the optimal.

The methods were evaluated plotting the accuracy of their predictions on the test data
against time. All of the plots have the titles of the following format:

[name of the dataset], n = [number of objects in the training set],

d = [number of features], m = [number of inducing inputs].

Also, all the datasets have been preprocessed by normalizing the features setting the mean
of all features to 0 and the variance to 1. For datasets without available test data, 20% of the
data have been used as a test set and 80% as a train set.

5.2 Results and discussion

The methods’ performance was compared on 7 datasets. Here, the results are discussed.
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Figure 4 Methods performance on small datasets

Figure 4 provides the results for german nd svmguide datasets. As one can see, on the small
german dataset, the stochastic svi-AdaDelta method struggles and it takes it longer to achieve
the optimal quality than for all the other methods which show similar results. On the svmguide

dataset, it takes vi-JJ-full and svi-AdaDelta a little bit longer to converge, while the other
three methods show roughly the same performance.

The results on magic telescope and ijcnn datasets are provided in Fig. 5. On the magic tele-

scope dataset, vi-JJ and vi-Taylor show poor quality on the first iterations but still manage to
converge faster than svi-AdaDelta. On both datasets, the vi-JJ-hybrid method works similar
to vi-JJ and vi-Taylor but shows better quality on the first iterations on the magic telescope

data. The method vi-JJ-full cannot converge to a reasonable quality on both datasets.
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Figure 5 Methods performance on medium datasets
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Figure 6 Methods performance on big datasets

Figure 6 provides the results on big cod-rna and skin nonskin datasets. On these datasets,
vi-JJ-full once again fails to achieve a reasonable quality, while the other methods work
similarly.

Finally, the results on a8a data are provided in Fig. 7. Here, a rather big amount of m = 500
inducing inputs were used. As one can see, vi-JJ-full and vi-JJ-hybrid are the fastest to
achieve the optimal quality. The svi-AdaDelta method also converges reasonably fast, while
vi-JJ and vi-Taylor struggle a little bit.

In general, the vi-JJ, vi-Taylor, and vi-JJ-hybrid methods perform similar to the
svi-AdaDelta method. On the big dataset skin nonskin with only three features, vi-JJ-hybrid
is a little bit slower than the stochastic svi-AdaDelta method but on all other datasets, it is
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Figure 7 Methods performance on the a8a dataset
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better. The vi-Taylor and vi-JJ methods struggle with a8a but are, otherwise, comparable
to vi-JJ-hybrid. The stochastic svi-AdaDelta method performs poorly on small datasets
and even on the big skin nonskin data does not manage to substantially outperform the other
methods, even provided a good value of the learning rate. Finally, vi-JJ-full works well on
small data and on the a8a but on all other datasets, it does not manage to achieve a reasonable
quality.

6 Concluding remarks
In this paper, a new approach to training variational inducing input GP classification is pre-
sented. Two new tractable ELBO are derived and several ways to maximize them are described.
The resulting methods vi-JJ, vi-JJ-full, vi-JJ-hybrid, and vi-Taylor are similar to the
method of [5] for GP-regression.

An experimental comparison of the suggested methods with the current state-of-the-art
method svi-AdaDelta of [7] is provided. In experimental setting, the present approach proved
to be more practical as it converges to the optimal quality as fast as the svi-AdaDelta method
without requiring the user to manually choose the parameters of the optimization method.

The four described vi methods showed similar performance and it is hard to distinguish
them. However, note that the vi-Taylor approach is more general and can be applied to
the likelihood functions that are not logistic. Also, a method, similar to vi-JJ-hybrid and
vi-JJ-full for the nonlogistic case, can be easily derived but it is out of the scope of this
paper.
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Предлагается новый подход к настройке моделей гауссовских процессов для задач
классификации. Стандартные методы для данной задачи имеют сложность O(n3), где n —
размер обучающей выборки. Данное обстоятельство не позволяет применять эти методы
к задачам с большим объемом данных. В связи с этим в литературе был предложен ряд
подходов, основанных на использовании так называемых вспомогательных точек (inducing
inputs). Изначально такие методы использовались для задачи регрессии, но в недавней
работе Хенсмэна с коллегами (2015 г.) подобный метод был разработан для задач клас-
сификации. В этом методе используется глобальная нижняя оценка на правдоподобие,
которая максимизируется по параметрам гауссовского процесса и по дополнительным ва-
риационным параметрам с помощью стохастической оптимизации. Вычислительная слож-
ность данного метода составляет O(nm2), где m — число вспомогательных точек, которое
обычно существенно меньше, чем n. Однако число переменных в оптимизации составляет
O(m2), что делает задачу поиска оптимальных параметров весьма сложной при больших
значениях m. Предлагаются две новые оценки на маргинальное правдоподобие в модели
гауссовских процессов со вспомогательными точками для задач классификации, а также
несколько методов для их оптимизации. В новых оценках количество численно оптими-
зируемых переменных не зависит от числа вспомогательных точек m. В результате новые
процедуры обучения становятся эффективными для широкого диапазона параметров n

и m. Кроме того, в отличие от стохастического метода из статьи Хенсмэна с коллегами
(2015 г.), новые процедуры не требуют настройки параметров пользователем. Это значи-
тельно облегчает использование новых методов на практике. Проведенные эксперименты
показывают, что новые методы демонстрируют сравнимое или лучшее качество по срав-
нению с методом из работы Хенсмэна с коллегами (2015 г.).

Ключевые слова: гауссовский процесс; классификация; большие данные; байесовский
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