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1 Introduction

This paper addresses the problem of bloat in Genetic Programming (GP) [1] and SR [2]. Sym-
bolic Regression generates superpositions of expert-given primitive functions to fit some given
dataset. The applications of SR include feature generation for time series and image process-
ing [3, 4], time series forecasting [5–7], dimensionality reduction, and data visualization [8].

Symbolic regression constructs a superposition as syntax tree [9], which structure is evolved
iteratively. It may generate overfitted and complex functions [1, 9]. For example, it tends to
evolve trees with introns [9], which add significant complexity to the tree structure [1, 5]. Intron
is an ineffective piece of code, which is likely to be removed from trees. In the superposi-
tion cos(x) + 0 · ln(x), the bold function is an intron, as it does not influence the values of
the rest part of the superposition. There is a number of approaches proposed to eliminate
introns [10–12]. Another kind of undesirable behavior of GP is a generation of complex super-
positions. For example, the function sin2(x) + cos2(x) is identically equals 1. Therefore, the
calculation of its values is ineffective and this function should be simplified. The approach pre-
sented in [12] handles both removing of introns and model simplification. The authors of [12]
simplify superpositions for postrun analysis. However, they do not either generate or make use
of parametric rules of rewriting, which simplify parametric superpositions. A rule of rewriting
is defined by a pair of syntax trees: pattern tree and replacement tree. Pattern tree should be
more complex than the replacement tree. Each found occurrence of the pattern tree in super-
positions is substituted by the replacement tree The details of this substitution is given below.
Finally, the simplified superposition has lesser complexity.

The current paper develops an approach of generation of parametric rules of rewriting.
These rules are used then during GP launches. The evolution of superpositions is analyzed
in this case. This paper analyzes also the computational complexity of the simplification and
compares it with the ones described in [12].

∗The research was supported by the Russian Foundation for Basic Research grant 16-37-00486.
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2 Motivation

Several papers [5, 13, 14] state that GP can benefit from preserving introns. Nevertheless, au-
thors of [12] mention a number of problems caused by tree bloat:

– calculation of values produced by excessive pieces of trees which slows down the process of
run;

– generation of sophisticated, uninterpretable models;
– excessive pieces of trees hide the true structural complexity of a superposition; models,

proper in the context of application, could be eliminated from a population by complexity
penalization;

– tree bloat makes it difficult to analyze the evolution of useful pieces of trees from iteration
to iteration; and

– tree bloat masks the true blocks of trees which are inherent for a particular application;
peeling these blocks from excessive pieces could improve convergence to a solution.

In this paper, these reasons are followed. The paper [12] considers only simplification of
nonparametric superpositions. However, tree bloat influence on the generation of the parametric
ones includes several other difficulties:

– evaluation of parameters presented in excessive blocks of code;
– excessive parameters slow down the convergence of parameters optimization procedures;

and
– if a solution is found, the parameters in its introns are not defined uniquely; therefore, there

is a need of penalty on the norm of parameter vector.

This paper solves these problems by means of rules of rewriting. Therefore, one needs experts
to define these rules. However, the set of rules is different in different applications. Moreover,
it is not guaranteed that expertly-given list of rules is complete and does not contain mistakes.
To provide this, an automatic rule generation procedure has been developed. This procedure
creates the full list of rules which are valid for a specific application. It is far better than looking
over the primitive set and constructing rules manually.

3 Problem Statement

Given a finite primitive set G = {f1, . . . , fK} ∪ {x1, . . . , xN} of primitives {f1, . . . , fK} (some
of them are parametric) and terminals {x1, . . . xN}, the set F of all possible superpositions of
them has been considered. This set is referred to as search space. To simplify notation, only
univariate superpositions will be considered: N = 1. Therefore, denote dataset D = {xt}ηt=1

where xt ∈ R and η is the number of points.

Each superposition s ∈ F has structural complexity C(s). It is equal to the number of
elements from G, which the superposition is composed of. For example, the structural complex-
ity of s = plus2(linear(x1), x1) is 4. Denote also P (s) as the number of parameters W (s) in
superposition s. Given parameters W (s), let V (s,W (s),D) be the values of s on the dataset D.

Denote the values of s given x over regression points are referred to as s(W (s), x1).

Some pairs of elements from F form rules of rewriting. A rule of rewriting is a pair (s1, s2)
such that functions s1 and s2 are equal and the inequalities C(s2) < C(s1) and P (s2) 6 P (s1)
hold. The definition of the equality between s1 and s2 depends on two cases.

1. Both of them are nonparametric: P (s1) = P (s2) = 0. Then, for each x ∈ D, s1(x) = s2(x).
2. Both of them are parametric. Then, for each D and W (s1), there exist parameters W (s2)

that s1 and s2 are equal on D : s1(W (s1), x) = s2(W (s2), x) ∀x ∈ D.
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Figure 1 Syntax tree of a superposition

For example, s1 = sin(w0x + w1) and s2 = cos(w′
0x + w′

1) are equal according to this
definition regardless of D. It holds because for each W (s1), the superposition s2 can be fitted
to the values s(W (s1),D) by optimizing of W (s2). To fit the superposition, the Levenberg–
Marquardt algorithm is used. As it does not provide exact values of optimal parameters, let us
use a hyperparameter τ as a threshhold for accuracy. Therefore, two values s1(W (s1), x) and
s2(W (s2), x) are called equal if

|s1(W (s1), x)− s2(W (s2), x)| < τ.

Each superposition s is represented by a syntax tree (Fig. 1). Its height is equal to the
length of the longest path from the root to the leaves. The height of the syntax tree shown
in Fig. 1 is equal to 2.

This paper aims at extracting all possible rules of rewriting from F such that the height of
the patterns is at most 3. Generated rules are supposed to be mathematical identities, not only
approximations on a given range of independent values.

4 Automatic Procedure of Rules Generation

This paper borrows ideas presented in [12] and applies them to generate parametric rules. The
authors of [12] call functions equivalent, if they have equal values on a dataset. The present
authors extended this definition to parametric superpositions. In this section, the procedure
of parametric rules generation is described. It is based on the following algorithm (see Algo-
rithm 1).

First, as in [12], let us define a range for x ∈ D. It depends solely on the application. If D is
preprocessed and scaled to a range between 0 and 1, the range is [0,1]. The choice of the range
is crucial for rules generation: functions, which are not mathematically identical, can be equal
on small intervals. For example, smooth functions are well approximated by linear function in
a small neighborhood of x. As this paper aims to generate pairs of mathematically identical
functions, the range should be rather large. However, estimation of a function on x drawn from
very large range suffers from the computational issues. The range [−3, 3] was chosen as a rather
good trade-off. The dataset of values of x1 is drawn from this range.

Second, let us form a primitive set G of functions and terminals. Generate all possible simple
superpositions of elements from the set. Simplicity of a superposition is user-defined. For exam-
ple, this paper considers only syntax trees of height at most 3. The generated superpositions can
contain parameters because parametric primitives are used. For each parametric superposition,
let us set random initial parameters. If an application imposes bounds on the parameters of
some primitives, the initial parameters should be drawn with respect to these requirements. If
the bounds are not imposed, the parameters are drawn from standard normal distribution.
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Algorithm 1 Generation of parametric rules of rewriting

Require: threshold τ , number of regression points η, number of checking iterations ν, fraction
of misfittings α, primitive set G

Ensure: rules of rewriting {pk, rk}k=1

assign a range for values of indepenent variable x and draw random points D = {xt}t=1 from
this range;
generate a set I of all simple superpositions of elements from G;
replicate I and get two sets: patterns I1 and replacements I1 = I2 = I;
for each pattern p ∈ I1
set random initial parameters in W (p);
calculate values V (p,W (p),D);
for each replacement r ∈ I2
optimize parameters W (r) to approximate V
if max

t=[1,...N ]
|p(W (p), xt)− r(W (r), xt)| < τ, then

for iter ∈ [1,ν]
number of failed fittings := 0
assign random initial parameters to W (p);
recalculate values V (p,W (p),D) on new parameters W (p);
optimize parameters W (r) to approximate V (p,W (p),D)
if max

t=[1,...N ]
|p(W (p), xt)− r(W (r), xt)| > τ, then

number of failed fittings++
if number of failed fittings < α · ν, then
save rule of rewriting (p, r)

return set of saved rules.

Third, the set of generated superpositions is cloned. The original set acts as a set of patterns
for rules and the cloned one is a set of replacements. Let us pick up the patterns consequently
and try to fit replacements to them. This requires optimization of a replacement’s parameters.
The paper uses Levenberg–Marquardt algorithm implemented in scipy.optimize.curve fit to fit
parameters. To check if a replacement represents the same mathematical function with a pattern
on a given range, another procedure is required.

5 Verification of Parametric Functions Equality

In this section, it is claimed that the functions are equal if they are produced. Assume that
the values produced by a pattern with random initial parameters are well approximated by
a replacement. Note that one successful fitting is not enough to claim that the pattern equals
the replacement. For example, sinw1 · x+ w2 with parameters W = [0.01, 0.01] is well fitted by
constant zero. However, the functions are significantly different in the values they produced in
general. Therefore, the equality is verified for different random parameters of patterns. Further,
let us denote patterns as p and replacements as r.

Given a set of candidates {r1, . . . , rj} to be equal to p, let us do the following steps to
each replacement ν times where ν is user-defined. Random parameters are assigned to W (p)
and new dependent values V (p,W (p),D) are calculated. The parameters W (r) are optimized
to fit these values. If the fraction of misfittings is rather small with respect to a user-defined
threshold α, then r is claimed to be equal to p. The number of algorithm applications and the
threshold are user-defined.
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6 Experimental Setup

In this section, the experiment which consists of two steps is described. First, let us launch
the procedure 1 in order to generate rules of simplification. Second, having these rules, let us
use simplifying system inside the GP functionality. Here, the best approximating superposition
has been extracted on each iteration. Then, the evolution of its mean squared error (MSE) is
plotted via the number of iteration. The resulted plot has two lines: one corresponds to the
basic version of GP and the other corresponds to the one which uses the present simplification
system.

At the start, let us discuss user-defined parameters mentioned in Algorithm 1. Their values
are presented in Table 1.

As the paper is aimed at producing the rules of rewriting acting as mathematical identities,
the range of x1 is chosen to be [−3, 3] rather than [−1, 1] or [0, 1] usually used in different appli-
cations. The reason is that, for example, smooth functions are well approximated by polynomials
on the unit interval. The interval is not chosen either to be large because of numerical issues.
Therefore, a trade-off is reached and it is set equal [−3, 3]. Producing proper rules of rewriting,
it is necessary to check if their do a good generalization on the outer range (−∞,−3) ∪ (3,∞).

The choice of both number of regression points and number of checking iterations is based on
trade-off between computational burden and correctness of algorithm. A dataset of hundred of
random regression points seems to be sufficient to produce representative values of function. In
other words, the plots of the functions are sufficiently distinct and contain necessary information
to make out the function corresponding to a plot.

The other parameters, namely, threshold τ and fraction of misfittings α, are chosen empiri-
cally. Note that one τ is chosen, it does not depend on the number of regression points η. This
is the main reason why there l∞ is preferable to more frequently used MSE. The fact that the
fraction of misfittings is not zero is due to imperfection of parameter optimization procedure.
As one does not have any prior knowledge about parameters domain, the initial parameters
should be set randomly. Therefore, for some functions and some randomly set parameters, op-
timization procedure, namely, Levenberg–Marquardt algorithm, does not converge or converge
in local optimum, which, nevertheless, is not global. This is the reason of why multistart is
used to fit a replacement r: optimization is launched from different initial guesses W (r) for the
parameters M1 times. However, as most computational burden rests with optimization proce-
dure, the use of multistart slows down the process almost in M1 times. Therefore, M1 is chosen
rather small.

As experiment shows, M1 is not sufficiently large for replacement parameters to be fitted
exactly well, but good enough to give appropriate approximation. Therefore, as generally only
a tiny fraction of replacements from I2 is fittable to a pattern, the following strategy is used.
For 5 best approximated replacements from I2,M2 ≫M1 launches are performed in multistart.
This strategy notably improves the generation of rules.

Table 1 User-defined parameters

Range
for x1

Number
of regression
points η

Number
of checking
iterations ν

Threshold τ
Fraction of
misfittings α

Multistart
iterations

on fitting M1

Multistart
iterations

on checking M1

[−3, 3] 100 50 0.04 0.04 5 150
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Table 2 Primitive set and their frequencies in patterns

Name Function Number of parameters Frequency

bump(x1) x1[w0 < x1 and x1 < w1] 2 0.02

sinc(x1)
sin(π(w1x1 + w2))

π(w1x1 + w2)
2 0.04

hvs(x1) x1[w0 < x1] 1 0.02
sina(x1) sin(w1x1 + w2) 2 0.04
lnl(x1) ln (w1x1 + w2) 2 0.02
expl(x1) exp(w1x1 + w2) 2 0.07
plus2(x1, x2) x1 + x2 0 0.32

normal(x1)
1

w1
exp

(

−(x1 − w2)
2

w1

)

2 0.05

frac2(x1, x2)
x1

x2
0 0.26

neg(x1) −x1 0 0.16

hypot(x1, x2)
√

x21 + x22 0 0.29
times2(x1, x2) x1x2 0 0.33
linear(x1) w1x1 + w2 2 0.14
parabola(x1) w1x

2
1 + w2x1 + w3 3 0.10

unity() 1 0 0.36
zero() 0 0 0.18
parameter () w1 1 0.41

The primitive set used for construction of superpositions is shown in Table 2. This paper
assumes that x1+x2 and x2+x1 represent the same function. Therefore, for each node of syntax
tree corresponding to commutative primitive, its children are ordered in some way.

7 Generation of Rules

Now, let us generate rules which have patterns with a height of their syntax trees not exceed-
ing 3. Given the restriction on height, let us generate the set I of all possible patterns. The
resulted set has cardinality |I(x1)| = 22 084 for patterns with only one terminal (univariate
case) and |I(x1, x2)| = 42 499 for two terminals (bivariate case). All of them are called candi-

dates as they will form the required rules. Note that the replacements will be taken from these
sets as well as patterns. Tables 3 and 4 show the distributions of generated candidates according

Table 3 Distributions of superpositions from I according to structural complexity C(·) and number
of parameters P (·) (univariate case)

P (·)
C(·)

0 1 2 3 4 5 6 7 8

1 3 1 0 0 0 0 0 0 0
2 3 4 22 10 1 0 0 0 0
3 30 22 51 63 169 93 17 1 0
4 72 117 558 396 108 9 0 0 0
5 441 428 515 613 1502 1179 384 59 4
6 395 749 3249 3076 1325 275 20 0 0
7 2106 2349 1278 345 46 0 0 0 0
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Table 4 Distributions of superpositions according to their structural complexities C(·) and number
of parameters P (·) (bivariate case)

P (·)
C(·)

0 1 2 3 4 5 6 7 8

1 4 1 0 0 0 0 0 0 0
2 4 5 29 11 1 0 0 0 0
3 50 29 66 79 220 107 18 1 0
4 126 186 951 555 123 9 0 0 0
5 984 741 843 971 2548 1700 482 67 4
6 910 1534 7169 5526 1910 320 20 0 0
7 6124 5344 2226 460 46 0 0 0 0

to their structural complexities C(·) and number of parameters P (·). The restriction on height
provides one with candidates which are either structurally or parametrically simple. One can
see from the tables that there are no many candidates, which are structurally complex and have
many parameters at the same time. It alleviates the computational burden of the algorithm
and allows one to use multistart while preserving reasonable operating time. Note that in this
paper, the use of multistart is reasonable only for the task of generation of rules. In general,
the use of multistart in the framework of GP, which builds approximating superpositions to the
given data, significantly increases its computational complexity.

Then, let us generate rules which have both patterns and replacements from the set of
candidates I, see the corresponding bar plot at Fig. 2. Tables 5 and 6 show the distributions
of patterns from generated rules according to their structural complexities C(·) and number of
parameters P (·).

The tables show that there are again not many superpositions which are simultaneously
structurally complex and have many parameters. However, one can see that in the bivariate
case, there are significantly more rules which contain complex patterns. Let us explain it. Take
a look at Table 2 where the frequencies of primitives are shown. Some primitives tend to appear
in patterns significantly more frequently than others. The primitives of zero arity are the most
frequent in patterns, but the next popular primitives are bivariate functions, not univariate. It is
intuitively clear that patterns, which comprise bivariate functions, tend to be more complex as
they have more degrees of freedom. Moreover, they have more terminal vertices in their syntax

Table 5 Distributions of rules patterns according to their structural complexities C(·) and number of
parameters P (·) (univariate case)

P (·)
C(·)

0 1 2 3 4 5 6

2 1 3 15 9 1 0 0
3 10 8 12 2 3 2 0
4 10 10 41 22 6 0 0
5 40 18 30 6 7 1 1
6 21 16 26 26 9 0 0
7 73 78 36 0 0 0 0
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Table 6 Distributions of rules patterns according to their structural complexities C(·) and number of
parameters P (·) (bivariate case)

P (·)
C(·)

0 1 2 3 4 5 6

2 1 3 15 9 1 0 0
3 10 8 12 2 3 2 0
4 9 10 41 22 6 0 0
5 14 18 22 3 7 1 1
6 2 4 9 14 2 0 0
7 18 23 10 0 0 0 0
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Figure 2 Frequencies of primitives in patterns

trees. Therefore, when the rules are generated in the bivariate case, there are more variants to
label these vertices with variables. As a result, more possible rules can be created.

Now, add the primitive minus2(x1, x2) = x1 − x2 to the set. Generate parametric rules
again. This produces the following bar plot (Fig. 3). Note that the frequency of minus2 is
approximately equal to the one of plus2. Moreover, all complex primitives such as ln and exp
occur in patterns significantly rarely. This leads to a notion that one can use these frequencies
as primitives order of nonlinearity. Of course, one can see that this estimation could be barely
applicable to argumentless functions: though zero is a simple primitive, it is as rare as neg in
patterns.

8 Data

Superpositions generated by GP are fitted to approximate volatility of the European stock
options. An option is a contract giving the owner the right, but not the obligation, to sell
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Figure 3 Frequencies of primitives in patterns (with minus2)

a specified amount of an underlying asset at a set price within a specified time called expiration
date [15]. A set price of an option is called a strike price [15].

Theoretical estimation of the fair market value of European-style options is given by Black–
Scholes formula [15]. It has only one parameter which cannot be observed in the market. This
parameter is the average future volatility of the underlying asset. Volatility is the degree of
variation of a trading price series over time as measured by the standard deviation of returns.
In this paper, the volatility of a financial instrument is investigated over a specified period
starting at the current time and ending at the expiration date of an option. It is estimated by
the market price of an instrument in assumption that the price is relevant to expected risks.

The Black–Scholes model relies on assumptions which imply the independence of the volatil-
ity from the strike price and the expiration date. It is assumed that implied volatility value
σimp is calculated as an argmin of the difference between the historical (stated on the trade)
and the fair strike price in the Black–Scholes model:

σimp = argmin
(

Chist − C(σ,Pr, B,K, t)
)

where Chist is the historical strike price; C is the fair strike price estimated by the Black–Scholes
model; Pr is the price of the instrument; B is the bank rate; K is the strike price; and t is the
time left to the expiration date.

To estimate the fair strike price, one must approximate the dependence σ(K, t) between
the strike price of the instrument, its volatility, and the time left to the expiration date. The
dataset is collected and described in [16]. In this paper, a superposition has been found which
approximates this dependence.

9 Embedding of Simplification System into Genetic Programming

To fit the data, the superpositions of primitives have been generated using symbolic regression
and genetic programming [2]. Generation algorithm iteratively creates populations of super-
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Table 7 Parameters of GP

Number
of

crossovers

Number
of mutations

Number
of

randomly
generated

Number
of best
selected
models

Error
function S

Maximum
number

of
parameters

Maximum
C(f)

Number
of

iterations
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Figure 4 Evolutions of MSE for different λ

positions in the way such that MSE of the best superposition does not increase from itera-
tion to iteration. Initial set consists of 300 randomly generated superpositions of structural
complexity equal to 6. Mutation and crossover [1] are the operations used to create new su-
perpositions. On each iteration, some randomly generated superpositions are appended to the
populations in order to maintain its diversity. The parameters of the generated parametric su-
perpositions are evaluated by Levenberg–Marquardt algorithm. Then, the best superpositions
have been selected from the currently generated population according to an error function S(f)

Machine Learning and Data Analysis, 2017. Volume 3. Issue 1.



16 A. S. Kulunchakov

0 5 10 15 20 25

Iteration

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

M
S

E

Evolution of error for λ = 0.013

With rule rewriting

Without rule rewriting

0 5 10 15 20 25

Iteration

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

M
S

E

Evolution of error for λ = 0.017

With rule rewriting

Without rule rewriting

0 5 10 15 20 25

Iteration

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

M
S

E

Evolution of error for λ = 0.02

With rule rewriting

Without rule rewriting

0 5 10 15 20 25

Iteration

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

M
S

E
Evolution of error for λ = 0.01. LM multistart.

With rule rewriting

Without rule rewriting

Figure 5 Evolutions of MSE for different λ

= MSE + λC(f). On each iteration, the best 30 superpositions according to S form the popu-
lation for the next iteration. All parameters of GP are shown in Table 7.

The parameter λ in the expression of S varies for different experiments. Its values are taken
from the set λ ∈ [0.001, 0.005, 0.007, 0.01, 0.013, 0.017, 0.02]. If it is either smaller than 0.001 or
larger than 0.02, the generated superpositions either complicated or inaccurate, respectively.
For each value, GP was lauched 400 times, evolutions of MSE of the best approximating su-
perposition were stored, and they were averaged over the launches. The averaged evolutions of
MSE were analyzed for two approaches: the basic version of GP and the modified one, which
uses simplification system. This analysis in conducted with respect to the value of λ.

The results are presented on the first 7 plots of Figs. 4 and 5. One can see that the results
are quite unstable: the gap between these two lines keeps appearing and disappearing. At the
same time, it is notable that the blue line, corresponding to the rule rewriting case, is always
below the red line. It means that application of the simplification system slightly improves GP.
However, the relative difference between the lines becomes negligible by the 25th iteration for
all values of λ. Therefore, the actual improvement of GP is not truly significant.
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Finally, take a look at the last plot in Fig. 5. In this particular experiment, the same
functionality of GP has been used except for the procedure, which estimates parameters of
superpositions. In the previous experiments, only one launch of Levenberg–Marquardt algorithm
has been used for this purpose. Now, we make three launches with different initial random
guesses: we perform the so-called multistart procedure. The evolutions of MSE in this case are
plotted on the last plot of Fig. 5. One can see that here, we have growing gap between the
lines and the basic version of GP is better. Therefore, the slight advantage of the modified GP
version is vanished by using of multistart. However, the use of multistart significantly increases
the CPU required by GP. Therefore, if one cannot increase computational complexity of GP,
the modified version of GP remains a little bit preferable to the basic one.

10 Concluding Remarks

In this paper, an exhaustive algorithm of rules creation has been proposed. These rules are used
to simplify superpositions generated by GP. It allows to improve their structural complexity
and reduce dimensionality of the parameters space. The distributions of primitives have been
analyzed in the created rules. It has been found that the frequency of a primitive could be treated
as a crude estimation of its nonlinearity. Averaged evolutions of MSE of the best approximating
superposition have been analyzed for basic and modified versions of GP. It has been shown a
slight improvement of the modified version over the basic one, though asymptotically they
are equivalent. This improvement is vanished when one uses multistart to tune parameters of
superpositions by Levenberg–Marquardt algorithm. However, multistart significantly increases
the computational complexity of GP.
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Порождение параметрических правил упрощения
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Исследуется проблема раздувания кода в символьной регрессии. Предлагается проце-
дура упрощения суперпозиций, порождаемых символьной регрессией. Предлагаемый под-
ход основан на идее эквивалентных преобразований суперпозиций, которая применяется
к порождению параметрических правил упрощения. Помимо удаления неэффективного
кода суперпозиций эти правила сокращают размерность их пространства параметров. Вы-
числительный эксперимент проводится на выборке по опционам Brent Crude Oil. Их вола-
тильность аппроксимируется через цену исполнения опциона и дату окончания его срока
действия.
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