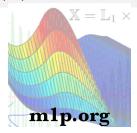
My first scientific paper in Machine Learning

Vadim Strizhov


m1p.org

2024

This course produces students' research papers

Machine learning projects to

- state the problem
- run the computational experiment
- share and deploy results

Science requires community

- ► The student is a project driver, plunges into scientific research
- The consultant conducts research and helps the student
- ► The professor states the problem and enlightens the goal

History

- ▶ It starts in February, ends in May, and goes 14 weeks
- ► For the past ten years, 500+ projects have been made
- Awarded in 2020 for its significant impact on the scientific community development

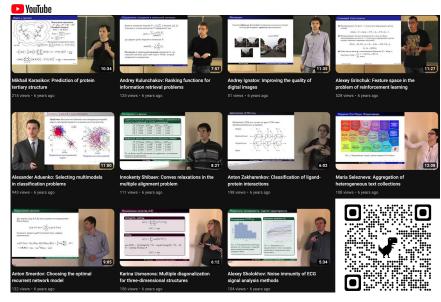
Step-by step weekly instructions and support

Lectures

- ► Theory: Machine learning for researchers
- ▶ Practice: The routine of scientific research

Seminars

- Collective games
- Analysis of projects
- ▶ Talks


We read aloud each paper to prepare it for publication

Four talks to convey your message to the audience

- Week 3 Introductory pitch
 - 6 The message
 - 9 Computational experiment
 - 12 Conference talk

YouTube channel: Machine Learning

Roadmap

- 1. Set the toolbox
- 2. Select your project
- 3. Read papers
- 4. Write introduction
- 5. State the problem
- 6. Set your experiment
- 7. Develop your theory
- 8. Make error analysis
- 9. Paper draft
- 10. Share your results
- 11. Finalize your paper
- 12. Present your talk

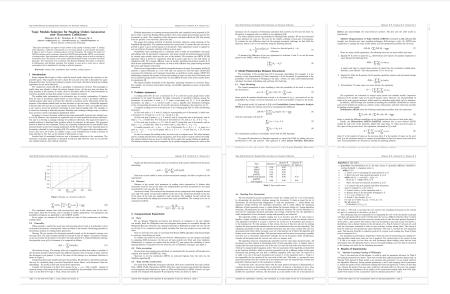
Deliveries are scheduled

- ► LinkReview with references and the literature review
- ► GitHub with the code and computational experiment
- ▶ Paper is ready for submission
- ► Slides for the presentation
- Video of the conference talk

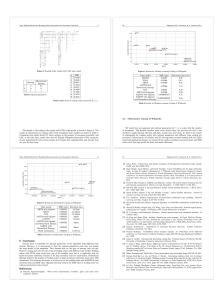
Table of deliveries and weekly scores

Author	Problem	Links	Supervisor	Scores
<u>Pilkevich</u> <u>Anton</u>	Existence conditions for hidden feedback loops in recommender systems	GitHub , LinkReview , Paper , Slides , Video , Video	<u>Khritankov</u>	AIL[B]P-X+RB-H1CV[O]T- EM.H1WJSF
Orlov Alexey	Model distillation on multi-domained datasets	GitHub LinkReview Paper		AIL[B]PXRBCV[O][M]
<u>Gorbulev</u> <u>Alexey</u>	Iterative improvement of the topic model with user feedback	GitHub, LinkReview, Paper, Slides, Code	Alekseev	AIL[B]PX>RBCV>[0]T>[M]

New in 2024


News

- Every your project is welcome!
- Your experts and consultants are highly appreciated!
- ▶ The number of students is not limited.


Challenges

- Every student should work with the society!
- ▶ The project should be welcome to disseminate.
- The peer-review must be continuous.

A student's paper example

A student's paper example

Timing

- ► Student: 48+ hours day weekly
- ► Consultant: one hour a week
- Professor: 30' to set, 30' to harvest

Profit

- Student publishes a paper, gets the proof of qualification
- Consultant gains mentorship
- Professor expands the team

The project topics

Any topic is welcome on the open access basis!

- Analysis of wearable devices' data
- Brain computer interface modelling
- Image and symbol recognition
- Synchrotron image analysis
- CERN LHCb data analysis
- ► Receptor-ligand docking
- Chemical reaction forecasting
- Multiscale time series forecasting

- Expert learning and knowledge distillation
- Neural architecture search
- Hyper-networks for model selection
- Model generation, processes
- Stochastic model selection
- Metaparameter optimisation
- Stochastic optimisation
- Spatial and time series alignment

Get info and ask your questions

Machine Learning

t.me/mip_org

Vadim Strizhov: mail to vadim@m1p.org

My first scientific paper