Difference between revisions of "Week 4"
From Research management course
Line 18: | Line 18: | ||
==R: Preliminary report == | ==R: Preliminary report == | ||
# Make sure that the obtained results are in not logical (sic!) contradiction with the goals of the computational experiment. | # Make sure that the obtained results are in not logical (sic!) contradiction with the goals of the computational experiment. | ||
− | # Illustrate the obtained results with the preliminary plot [http://www.machinelearning.ru/wiki/index.php?title=JMLDA/Fig see the format]. | + | # Illustrate the obtained results with the preliminary plot [http://www.machinelearning.ru/wiki/index.php?title=JMLDA/Fig see the format]. Optimally this plot is hand-made. '''Just draw it with a pencil on a piece of paper.''' See [[Media:likelihood_handdrawn.png|an example]]. |
# Write a mini-report on the results with | # Write a mini-report on the results with | ||
## a short description of the figure: what the reader could see, what are the consequences, | ## a short description of the figure: what the reader could see, what are the consequences, |
Revision as of 17:17, 1 March 2023
The goal is to get the simplest possible solution to your problem: it is models and its parameters. So make the model fit data with the minimum of your efforts.
Contents
X: Experiment planning
Plan your computational experiment.
- Discuss the experiment goal with your adviser and team.
- Put this goal in the section Computational experiment
- Describe your basic data set, a synthetic, or a simple real one:
- put in the text the title, source and set up of measurements (it is the technical description, the theoretical one is in the problem statement section),
- write down the number of objects, features, describe general statistics,
- for a synthetic data set describe the generation model, its parameters (for example, uniform random independent sampling some given interval).
- Describe the configuration of algorithm run.
- Plan the whole experimental part.
- List expected tables and figures:
- make short and long list, for each
- describe axes,
- make a draft with a pencil.
R: Preliminary report
- Make sure that the obtained results are in not logical (sic!) contradiction with the goals of the computational experiment.
- Illustrate the obtained results with the preliminary plot see the format. Optimally this plot is hand-made. Just draw it with a pencil on a piece of paper. See an example.
- Write a mini-report on the results with
- a short description of the figure: what the reader could see, what are the consequences,
- the results in numbers and comments on it,
- put the report to the section computational experiment.
B: Run basic code
Select the basic algorithm and run it using a simple data set.
- Run your basic algorithm:
- select a simplest algorithm (with your adviser) to (partially) solve the problem you set.
- Collect a synthetic data set or download a simple real-word data set of small size.
- Upload your data to the repository (in case the data size exceed 5MB or the data set consists of numerous files, please discuss with your adviser and team).
- Run the basic algorithm on the synthetic data set, estimate the error.
- Describe the basic algorithm, analyst its features, list competitive models.
- Описание - указание на название черного ящика. Желательно указывать на источник, где содержимое черного ящика описывается подробно. Указывать структурные параметры черного ящика.
- Описание модели как отображения из пространства описания объектов в пространство целевых переменных. При этом можно указать на алгоритм оптимизации параметров модели в виде черного ящика.
- Описание модели и алгоритма оптимизации его параметров в виде псевдокода.
Resources
- Slides for week 4. Slides 2022.
- Video for week 4.
- Бахтеев О.Ю. Системы и средства глубокого обучения, статья
- Мотренко А.П. Повышение качества классификации, статья
- Исаченко Р.В. Снижение размерности в задаче декодирования, статья
- The goals of computational experiments А. Грабовой, В. Алексеев, А. Рогозина, И. Игашов, Н. Уваров
- Example of the measurement description, Bishop C.P. Pattern recognition and machine learning, 2006. Pp. 677-683.]