Difference between revisions of "Fundamental theorems"
(54 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | Fundamental theorems of Machine learning | + | {{#seo: |
+ | |title=Fundamental Theorems of Machine Learning | ||
+ | |titlemode=replace | ||
+ | |keywords=Fundamental theorems of Machine Learning | ||
+ | |description=The course Fundamental Theorems of Machine Learning studies techniques and practice of theorem formulations and proofs in machine learning. | ||
+ | }} | ||
+ | ==Fundamental theorems of Machine Learning with proofs== | ||
− | + | The goal of the course is to boost the quality of bachelor's and master's thesis works; to make the results of student scientific research well-founded. The course studies techniques and practice of theorem formulations and proofs in machine learning. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Why one needs to convey an important message, a scientific result as a theorem? | |
− | + | # Theorems are the most important messages in the field of research. | |
− | + | # Theorems present results in the language of mathematics by generality and rigor. | |
+ | # Theorems are at the heart of mathematics and play a central role in its aesthetics. | ||
− | + | Theorems present the message immediately and leave reasoning after. The direct narration puts reason first and the results after that. | |
+ | * How does direct narration transform into fast narration? | ||
+ | * How to find, state, and prove theorems in our work? | ||
− | + | This course shows both narration styles. It refers to our educational study and our work experience: | |
− | + | # Educational mimic progression | |
− | # | + | #* Definition <math>\to</math> (Axiom set) <math>\to</math> Theorem <math>\to</math> Proof <math>\to</math> Corollaries <math>\to</math> Examples <math>\to</math> Impact to applications |
− | + | # Scientific discovery progression | |
+ | #* Application problems <math>\to</math> Problem generalisations <math>\to</math> Useful algebraic platform <math>\to</math> Definitions <math>\to</math> Axiom set | ||
+ | So in our practice, we mimic the first part of the progression, then learn to discover patterns and formulate theorems. The theoretical talks give us a series of good examples. | ||
− | == | + | ==Theorems== |
− | # | + | # Fundamental theorem of linear algebra [https://www.engineering.iastate.edu/~julied/classes/CE570/Notes/strangpaper.pdf S] |
− | # | + | # Singular values decomposition and spectral theorem [https://en.wikipedia.org/wiki/Spectral_theorem W] |
+ | # Gauss–Markov-(Aitken) theorem [https://en.wikipedia.org/wiki/Gauss–Markov_theorem W] | ||
+ | # Principal component analysis [https://en.wikipedia.org/wiki/Principal_component_analysis W] | ||
+ | # Karhunen–Loève theorem [https://en.wikipedia.org/wiki/Karhunen–Loève_theorem W] | ||
+ | # Kolmogorov–Arnold representation theorem [https://en.wikipedia.org/wiki/Kolmogorov–Arnold_representation_theorem W] | ||
+ | # Universal approximation theorem by Cybenko [https://en.wikipedia.org/wiki/Universal_approximation_theorem W] | ||
+ | # Deep neural network theorem [https://github.com/MarkPotanin/GeneticOpt/blob/master/Potanin2019NNStructure_APX.pdf Mark] | ||
+ | # Inverse function theorem and Jacobian [https://en.wikipedia.org/wiki/Inverse_function_theorem W] | ||
+ | # No free lunch theorem by Wolpert [https://en.wikipedia.org/wiki/No_free_lunch_theorem W] | ||
+ | # RKHS by Aronszajn and Mercer's theorem [https://en.wikipedia.org/wiki/Mercer%27s_theorem W] | ||
+ | # Representer theorem by Schölkopf, Herbrich, and Smola [https://en.wikipedia.org/wiki/Representer_theorem W] | ||
+ | # Convolution theorem (FT, convolution, correlation with CNN examples) [https://en.wikipedia.org/wiki/Convolution_theorem W] | ||
+ | # Fourier inversion theorem [https://en.wikipedia.org/wiki/Fourier_inversion_theorem W] | ||
+ | # Wiener–Khinchin theorem about autocorrelation and spectral decomposition [https://en.wikipedia.org/wiki/Wiener–Khinchin_theorem W] | ||
+ | # Parseval's theorem (and uniform, non-uniform convergence) [https://en.wikipedia.org/wiki/Parseval%27s_theorem W] | ||
+ | # Probably approximately correct learning with the theorem about compression means learnability | ||
+ | # Bernstein–von Mises theorem [https://en.wikipedia.org/wiki/Bernstein–von_Mises_theorem W] | ||
+ | # Holland's schema theorem [https://en.wikipedia.org/wiki/Holland%27s_schema_theorem W] | ||
+ | # Variational approximation | ||
+ | # Convergence of random variables and Kloek's theorem [https://en.wikipedia.org/wiki/Big_O_in_probability_notation W] | ||
+ | # Exponential family of distributions and Nelder's theorem | ||
+ | # Multi-armed bandit theorem | ||
+ | # Copulas and Sklar's theorem [https://en.wikipedia.org/wiki/Copula_(probability_theory) W] | ||
+ | # Boosting theorem Freud, Shapire, 1996, 1995 | ||
+ | # Bootstrap theorem (statistical estimations): Ergodic theorem | ||
+ | |||
+ | ===Each class contains=== | ||
+ | # A lecturer's talk on one of fundamental theorems (<math>40' = 30' + 10'</math> discussion) | ||
+ | # Two students' talks (each <math>20' = 15' + 5'</math> discussion) | ||
− | === | + | ===Each student delivers two talks=== |
− | + | # On a theorem, which is formulated in a paper from the list of student thesis work's references | |
− | + | # On a theorem, which is formulated and proved by the student | |
− | === | + | ===It is welcome to=== |
− | + | * Make variants of our formulations and proofs | |
− | + | * Re-formulate significant messages of researchers and formulate these messages as theorems | |
− | |||
− | |||
− | === | + | ===Plan of the talk=== |
− | + | # Introduction: the main message briefly | |
− | + | # If necessary (it could be introduced during the talk) | |
− | + | ## Axiom sets | |
+ | ## Definitions | ||
+ | ## Algebraic structures | ||
+ | ## Notations | ||
+ | # Theorem formulation and exact proof | ||
+ | ## The author's variant of the proof could be ameliorated | ||
+ | # Corollaries | ||
+ | # Theorem significance and applications | ||
− | === | + | ===Typography=== |
− | * | + | * As one (or two) text page [https://drive.google.com/file/d/17AcostCAVSKfgK52MAelsSy_dC-sxDR4/view?usp=sharing example], [https://www.overleaf.com/read/wsmczggkzpgj template to download] |
− | + | * Please | |
− | + | ** set the font size <math>\geqslant 14</math>pt | |
− | + | ** include plots, diagrams, freehand drawings | |
− | * | ||
− | === | + | ===The organization=== |
− | * | + | * GitHub project to upload your text [https://github.com/Intelligent-Systems-Phystech/FundamentalTheoremsML Intelligent-Systems-Phystech/FundamentalTheoremsML] to the group folder upload the pdf, tex, fig files named as Surname2021Literature, Surname2021Research |
− | * | + | * See the Youtube channel [https://www.youtube.com/channel/UC90B3Y_FbBRrRQk5TCiKgSA Machine Learning] |
− | * | + | * Spring semester, Wednesdays 14:30 at Zoom m1p.org/go_zoom |
− | == | + | ===Scoring=== |
− | {|class="wikitable" | + | * Talks and text 0-4 points, according to comparison |
+ | * Out-of-schedule drops a half | ||
+ | * The exam 2 points: schemes of proof of various theorems | ||
+ | ** time-limit test (as Physics state exam) and discussion | ||
+ | ** theorem formulation and poof scheme are hand-written | ||
+ | ** two random theorems from the list below, 10 min to write the text | ||
+ | |||
+ | ==Theorem types== | ||
+ | <!--* Должна быть показана связь между различными областями машинного обучения | ||
+ | * Вероятность, обоснованность, порождение и выбор, корректность по Адамару, снижение размерности, сходимость алгоритмов --> | ||
+ | * Uniqueness, existence | ||
+ | * Universality | ||
+ | * Convergence <!--[https://www.youtube.com/watch?v=Ajar_6MAOLw] --> | ||
+ | <!--Поточечно | ||
+ | **Равномерно | ||
+ | **По мере | ||
+ | **Почти всюду | ||
+ | **По распределению | ||
+ | **По вероятности | ||
+ | **По Чезаро, Борделю, Пуассона, Эйлеру | ||
+ | **Абсолютная | ||
+ | **Условная | ||
+ | **В среднем L1, среднеквадратичном L2 | ||
+ | **Сильная, слабая | ||
+ | *Оценки | ||
+ | **Точечная | ||
+ | **Не точечная | ||
+ | **Состоятельная | ||
+ | **Несмещенная | ||
+ | **Эффективная | ||
+ | **Omitted-variable bias | ||
+ | * Almost sure, almost everywhere | ||
+ | --> | ||
+ | * Complexity | ||
+ | * Properties of estimations | ||
+ | * Bounds | ||
+ | |||
+ | ==Schedule== | ||
+ | Spring semester 2021 | ||
+ | ===Student talks=== | ||
+ | {|class = "wikitable" | ||
|- | |- | ||
− | ! | + | ! Speaker |
− | ! | + | ! References |
− | |||
|- | |- | ||
− | | | + | | Bishuk Anton |
− | |17.2 [https://github.com/ApostolAnt/Projects/blob/master/______.pdf link] | + | | 17.2 [https://github.com/ApostolAnt/Projects/blob/master/______.pdf link] |
− | |||
|- | |- | ||
− | | | + | | Weiser Kirill |
− | |17.2 [https://github.com/Nerkan78/IntelligentSystems/blob/main/Diploma/VayserKirill2020/MatheronRule.pdf link] | + | | 17.2 [https://github.com/Nerkan78/IntelligentSystems/blob/main/Diploma/VayserKirill2020/MatheronRule.pdf link], [https://github.com/Nerkan78/IntelligentSystems/blob/main/Diploma/VayserKirill2020/ErrorAnalysis.pdf link] |
− | |||
|- | |- | ||
− | | | + | | Grebenkova Olga |
− | |24.2 [https://github.com/Intelligent-Systems-Phystech/Grebenkova-BS-Thesis/raw/main/ELBo.pdf link] | + | | 24.2 [https://github.com/Intelligent-Systems-Phystech/Grebenkova-BS-Thesis/raw/main/ELBo.pdf link] |
− | |||
|- | |- | ||
− | | | + | | Gunaev Ruslan |
− | |24.2 [https://github.com/Gunaev/Gunaev_BS-thesis/blob/main/th_diplom.pdf link] | + | | 24.2 [https://github.com/Gunaev/Gunaev_BS-thesis/blob/main/th_diplom.pdf link] |
− | |||
|- | |- | ||
− | | | + | | Zholobov Vladimir |
− | |3.3 [https://github.com/Intelligent-Systems-Phystech/Zholobov-BS-Thesis/blob/main/Zholobov_thesis.pdf link] | + | | 3.3 [https://github.com/Intelligent-Systems-Phystech/Zholobov-BS-Thesis/blob/main/Zholobov_thesis.pdf link] |
− | |||
|- | |- | ||
− | | | + | | Islamov Rustem |
− | |3.3 [https://github.com/Intelligent-Systems-Phystech/Islamov-BS-Thesis/blob/main/Fundamental%20theorems%20on%20Machine%20Learning/First%20report/Stochastic%20Newton%20method.pdf link] | + | | 3.3 [https://github.com/Intelligent-Systems-Phystech/Islamov-BS-Thesis/blob/main/Fundamental%20theorems%20on%20Machine%20Learning/First%20report/Stochastic%20Newton%20method.pdf link] |
− | |||
|- | |- | ||
− | | | + | | Pankratov Victor |
− | |10.3 [https://github.com/Intelligent-Systems-Phystech/Pankratov_BS_Thesis/blob/main/link1.pdf link] | + | | 10.3 [https://github.com/Intelligent-Systems-Phystech/Pankratov_BS_Thesis/blob/main/link1.pdf link] |
− | |||
|- | |- | ||
− | | | + | | Savelyev Nikolay |
− | |10.3 [https://github.com/Intelligent-Systems-Phystech/Savelev-BS-Thesis/raw/main/Prediction_Learning_and_Games- | + | | 10.3 [https://github.com/Intelligent-Systems-Phystech/Savelev-BS-Thesis/raw/main/Prediction_Learning_and_Games-B-18-21.pdf link] |
− | |||
|- | |- | ||
− | | | + | | Filatov Andrey |
− | |10.3 [https://github.com/Intelligent-Systems-Phystech/Filatov-BS-Thesis/blob/main/Fundamental%20Theorems/Theorem.pdf link] | + | | 10.3 [https://github.com/Intelligent-Systems-Phystech/Filatov-BS-Thesis/blob/main/Fundamental%20Theorems/Theorem.pdf link] |
− | |||
|- | |- | ||
− | | | + | | Filippova Anastasia |
− | |17.3 | + | | 17.3 link |
− | |||
|- | |- | ||
− | | | + | | Khar Alexandra |
− | |17.3 [https://github.com/Intelligent-Systems-Phystech/Khar-BS-Thesis/blob/main/otchet_1.pdf link] | + | | 17.3 [https://github.com/Intelligent-Systems-Phystech/Khar-BS-Thesis/blob/main/otchet_1.pdf link] |
− | |||
|- | |- | ||
− | | | + | | Khristolyubov Maxim |
− | |24.3 [https://github.com/Intelligent-Systems-Phystech/Khristolyubov-BS-Thesis/blob/main/paper/Proof_of_the_theorem.pdf link] | + | | 24.3 [https://github.com/Intelligent-Systems-Phystech/Khristolyubov-BS-Thesis/blob/main/paper/Proof_of_the_theorem.pdf link] |
− | |||
|- | |- | ||
− | | | + | | Shokorov Vyacheslav |
− | |24.3 [https://github.com/Intelligent-Systems-Phystech/Shokorov-BS-Thesis/blob/main/report/VKR_Theorem.pdf link] | + | | 24.3 [https://github.com/Intelligent-Systems-Phystech/Shokorov-BS-Thesis/blob/main/report/VKR_Theorem.pdf link] |
− | |||
|- | |- | ||
|} | |} | ||
− | == | + | ===Invited talks=== |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{|class="wikitable" | {|class="wikitable" | ||
|- | |- | ||
− | ! Дата | + | <!--! Дата |
− | ! Тема | + | ! Тема--> |
− | ! | + | ! Speaker |
− | ! | + | ! Link |
|- | |- | ||
− | |10 февраля | + | <!--|10 февраля |
− | |Вводное занятие (и Основная теорема статистики) | + | |Вводное занятие (и Основная теорема статистики)--> |
− | | | + | | Strijov, Potanin |
− | |[https://drive.google.com/file/d/17AcostCAVSKfgK52MAelsSy_dC-sxDR4/view?usp=sharing link] | + | |10.2 [https://drive.google.com/file/d/17AcostCAVSKfgK52MAelsSy_dC-sxDR4/view?usp=sharing link] |
|- | |- | ||
− | |17 февраля | + | <!--|17 февраля |
− | |Теорема сходимости перцептрона Ф.Розенблатта, Блока, Джозефа, Кестена | + | |Теорема сходимости перцептрона Ф.Розенблатта, Блока, Джозефа, Кестена--> |
− | | | + | | Mark Potanin |
− | |[https://drive.google.com/file/d/1Pu8mvexKkO45ED4MWSH-sZDusNNTgMpC/view?usp=sharing link] | + | |17.2 [https://drive.google.com/file/d/1Pu8mvexKkO45ED4MWSH-sZDusNNTgMpC/view?usp=sharing link] |
|- | |- | ||
− | |24 февраля | + | <!--|24 февраля |
− | |Теоремы Колмогорова и Арнольда, теорема об универсальном аппроксиматоре Цыбенко, теорема о глубоких нейросетях | + | |Теоремы Колмогорова и Арнольда, теорема об универсальном аппроксиматоре Цыбенко, теорема о глубоких нейросетях --> |
− | | | + | |Mark Potanin |
− | |[https://drive.google.com/file/d/1Thm73TYyLXhoHNA_4uhyFB9Im26Ctjxp/view?usp=sharing link] | + | |24.2 [https://drive.google.com/file/d/1Thm73TYyLXhoHNA_4uhyFB9Im26Ctjxp/view?usp=sharing link] |
|- | |- | ||
− | |10 марта | + | <!--|10 марта |
− | |[[Media:BershteinFonMises.pdf|Берштейн - фон Мизес]] | + | |[[Media:BershteinFonMises.pdf|Берштейн - фон Мизес]]--> |
− | | | + | |Andriy Grabovyi |
− | |[ | + | |10.3 [http://www.machinelearning.ru/wiki/images/3/33/BershteinFonMises.pdf link] |
|- | |- | ||
− | |17 марта | + | <!--|17 марта |
− | |[[Media:BershteinFonMises.pdf|Берштейн - фон Мизес]] (продолжение) | + | |[[Media:BershteinFonMises.pdf|Берштейн - фон Мизес]] (продолжение)--> |
− | | | + | |Andriy Grabovyi |
− | |[ | + | |17.3 [http://www.machinelearning.ru/wiki/images/3/33/BershteinFonMises.pdf link] |
|- | |- | ||
− | |24 марта | + | <!--|24 марта |
− | |[[Media:PAC_learning_compress.pdf|РАС обучаемость, теорема о том, что сжатие предполагает обучаемость]] | + | |[[Media:PAC_learning_compress.pdf|РАС обучаемость, теорема о том, что сжатие предполагает обучаемость]]--> |
− | | | + | |Andriy Grabovyi |
− | |[ | + | |24.3 [http://www.machinelearning.ru/wiki/images/b/ba/PAC_learning_compress.pdf link] |
|- | |- | ||
− | |31 марта | + | <!--|31 марта |
− | |Сходимость про вероятности при выборе моделей | + | |Сходимость про вероятности при выборе моделей--> |
− | | | + | |Mark Potanin |
− | |[https://drive.google.com/file/d/1-rtOJtjivRs0TwOga8-MLaBEzCcUyD0H/view?usp=sharing link] | + | |31.3 [https://drive.google.com/file/d/1-rtOJtjivRs0TwOga8-MLaBEzCcUyD0H/view?usp=sharing link] |
|- | |- | ||
− | |7 апреля | + | <!--|7 апреля |
− | |Теорема о минимальной длине описания | + | |Теорема о минимальной длине описания Метрические пространства: RKHS Аронжайн, теорема Мерсера |
− | | | + | |Oleg Bakhteev |
− | | link | + | |7.4 link |
|- | |- | ||
|14 апреля | |14 апреля | ||
|Теорема о свертке (Фурье, свертка, автокорреляция) с примерами сверточных сетей | |Теорема о свертке (Фурье, свертка, автокорреляция) с примерами сверточных сетей | ||
− | | | + | |Philipp Nikitin |
− | | link | + | |14.4 link |
|- | |- | ||
|21 апреля | |21 апреля | ||
|Representer theorem, Schölkopf, Herbrich, and Smola | |Representer theorem, Schölkopf, Herbrich, and Smola | ||
− | | | + | |Andriy Grabovyi |
− | | link | + | |21.4 link |
|- | |- | ||
|28 апреля | |28 апреля | ||
|Обратная теорема Фурье, теорема Парсеваля (равномерная и неравномерная сходимость) | |Обратная теорема Фурье, теорема Парсеваля (равномерная и неравномерная сходимость) | ||
− | | | + | |Philipp Nikitin |
− | | link | + | |28.4 link |
|- | |- | ||
− | + | 5 мая | |
|Вариационная аппроксимация, теорема о байесовском выборе моделей | |Вариационная аппроксимация, теорема о байесовском выборе моделей | ||
− | | | + | |Oleg Bakhteev |
− | | link | + | |5.5 link |
|- | |- | ||
− | + | 12 мая | |
|Разбор и обсуждение письменных работ: теоремы их доказательства (входящие в диплом) | |Разбор и обсуждение письменных работ: теоремы их доказательства (входящие в диплом) | ||
− | | | + | | Potanin, Strijov |
− | | | + | |12.5 Discussion |
|- | |- | ||
− | + | 26 мая | |
|Экзамен: схемы доказательства различных теорем (тест на время, как в гос по физике, и обсуждение) | |Экзамен: схемы доказательства различных теорем (тест на время, как в гос по физике, и обсуждение) | ||
− | | | + | |Potanin, Aduenko, Bakhteev |
− | | | + | |26.5 Exam |
|- | |- | ||
− | + | ||
|Теорема о бесплатных обедах в машинном обучении, Волперт | |Теорема о бесплатных обедах в машинном обучении, Волперт | ||
|Радослав Нейчев | |Радослав Нейчев | ||
Line 228: | Line 262: | ||
|Радослав Нейчев | |Радослав Нейчев | ||
| | | | ||
− | |- | + | |---> |
|} | |} | ||
+ | |||
+ | ===Out of schedule === | ||
+ | # Three works by Greg Yang [https://arxiv.org/pdf/1910.12478.pdf arXiv:1910.12478], [https://arxiv.org/pdf/2006.14548 arXiv:2006.14548], [https://arxiv.org/pdf/2009.10685.pdf arXiv:2009.10685] [https://www.youtube.com/watch?v=kc9ll6B-xVU&list=PLt1IfGj6-_-ewBQJDVMJOJNlW5AbY6D3p&index=4&fbclid=IwAR3kIUQZWsh9j_Xp2TYb5ZmcsH7nFDIpCuRnmeoxoRJyPuxKvFyxTRI3ypY Youtube Rus] | ||
+ | # Theorems on flows by Johann Brehmera and Kyle Cranmera [https://arxiv.org/pdf/2003.13913v2.pdf arXiv:2003.13913v2] | ||
==References== | ==References== | ||
+ | |||
+ | # Mathematical statistics by A.A. Borovkov, 1998 | ||
+ | # [https://www.di.ens.fr/~fbach/ltfp_book.pdf Learning Theory from First Principles] by Francis Bach, 2021 <!--https://www.di.ens.fr/~fbach/learning_theory_class/index.html--> | ||
+ | # [https://cs.uwaterloo.ca/~y328yu/classics/kernel.pdf Theoretical foundations of potential function method in pattern recognition] by M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer // Avtomatica i Telemekhanica, 1964. Vol. 25, pp. 917-936. | ||
+ | <!-- Айзерман М.А., Браверман Э.М., Розоноэр Л.И. Метод потенциальных функций в теории обучения машин, 1970 (глава про сходимость)--> | ||
+ | |||
===Proof techniques=== | ===Proof techniques=== | ||
# [https://www.birmingham.ac.uk/Documents/college-eps/college/stem/Student-Summer-Education-Internships/Proof-and-Reasoning.pdf Proofs and Mathematical Reasoning by Agata Stefanowicz, 2014] | # [https://www.birmingham.ac.uk/Documents/college-eps/college/stem/Student-Summer-Education-Internships/Proof-and-Reasoning.pdf Proofs and Mathematical Reasoning by Agata Stefanowicz, 2014] | ||
− | |||
# The nuts and bolts of proofs by Antonella Cupillari, 2013 | # The nuts and bolts of proofs by Antonella Cupillari, 2013 | ||
+ | # Theorems, Corollaries, Lemmas, and Methods of Proof by Richard J. Rossi, 1956 | ||
+ | # Problem Books in Mathematics by P.R. Halmos (editor), 1990 | ||
+ | # Les contre-exemples en mathématique par Bertrand Hauchecorne, 2007 | ||
# [http://fulviofrisone.com/attachments/article/452/Kolmogorov%20And%20Mathematical%20Logic.pdf Kolmogorov and Mathematical Logic] by Vladimir A. Uspensky // The Journal of Symbolic Logic, Vol. 57, No. 2 (Jun., 1992), 385-412. | # [http://fulviofrisone.com/attachments/article/452/Kolmogorov%20And%20Mathematical%20Logic.pdf Kolmogorov and Mathematical Logic] by Vladimir A. Uspensky // The Journal of Symbolic Logic, Vol. 57, No. 2 (Jun., 1992), 385-412. | ||
# [http://www.vixri.com/d/Uspenskij%20V.A.%20_Chto%20takoe%20aksiomaticheskij%20metod.pdf Что такое аксиоматический метод?] В.А. Успенский, 2001 | # [http://www.vixri.com/d/Uspenskij%20V.A.%20_Chto%20takoe%20aksiomaticheskij%20metod.pdf Что такое аксиоматический метод?] В.А. Успенский, 2001 | ||
# [http://lpcs.math.msu.su/~zolin/ax/pdf/2015_Axiomatic_method_Zolin_Lectures.pdf Аксиоматический метод]. Е.Е. Золин, 2015 | # [http://lpcs.math.msu.su/~zolin/ax/pdf/2015_Axiomatic_method_Zolin_Lectures.pdf Аксиоматический метод]. Е.Е. Золин, 2015 | ||
− | |||
===Methodology=== | ===Methodology=== | ||
− | # [http://eqworld.ipmnet.ru/ru/library/books/Klini1957ru.djvu | + | # [http://eqworld.ipmnet.ru/ru/library/books/Klini1957ru.djvu Introduction to Metamathematics] by Stephen Cole Kleene, 1950 |
# Science and Method by Henry Poincare, 1908 | # Science and Method by Henry Poincare, 1908 | ||
# A Summary of Scientific Method by Peter Kosso, 2011 | # A Summary of Scientific Method by Peter Kosso, 2011 | ||
# Being a Researcher: An Informatics Perspective by Carlo Ghezzi, 2020 | # Being a Researcher: An Informatics Perspective by Carlo Ghezzi, 2020 | ||
+ | # [https://mathvault.ca/math-glossary/ The definitive glossary of higher mathematical jargon] by Math Vault, 2015 | ||
+ | # The definitive guide to learning higher mathematics: 10 principles to mathematical transcendence by Math Vault, 2020 | ||
+ | # [https://en.wikipedia.org/wiki/List_of_mathematical_jargon List of mathematical jargon] on Wikipedia | ||
# [https://cs9.pikabu.ru/post_img/big/2018/05/21/9/1526915408141416733.jpg Пикабу. Типичные методы доказательства, 2018] (если вы чувствуете, что несет не туда) | # [https://cs9.pikabu.ru/post_img/big/2018/05/21/9/1526915408141416733.jpg Пикабу. Типичные методы доказательства, 2018] (если вы чувствуете, что несет не туда) | ||
− | |||
− |
Latest revision as of 22:20, 11 February 2024
Contents
Fundamental theorems of Machine Learning with proofs
The goal of the course is to boost the quality of bachelor's and master's thesis works; to make the results of student scientific research well-founded. The course studies techniques and practice of theorem formulations and proofs in machine learning.
Why one needs to convey an important message, a scientific result as a theorem?
- Theorems are the most important messages in the field of research.
- Theorems present results in the language of mathematics by generality and rigor.
- Theorems are at the heart of mathematics and play a central role in its aesthetics.
Theorems present the message immediately and leave reasoning after. The direct narration puts reason first and the results after that.
- How does direct narration transform into fast narration?
- How to find, state, and prove theorems in our work?
This course shows both narration styles. It refers to our educational study and our work experience:
- Educational mimic progression
- Definition \(\to\) (Axiom set) \(\to\) Theorem \(\to\) Proof \(\to\) Corollaries \(\to\) Examples \(\to\) Impact to applications
- Scientific discovery progression
- Application problems \(\to\) Problem generalisations \(\to\) Useful algebraic platform \(\to\) Definitions \(\to\) Axiom set
So in our practice, we mimic the first part of the progression, then learn to discover patterns and formulate theorems. The theoretical talks give us a series of good examples.
Theorems
- Fundamental theorem of linear algebra S
- Singular values decomposition and spectral theorem W
- Gauss–Markov-(Aitken) theorem W
- Principal component analysis W
- Karhunen–Loève theorem W
- Kolmogorov–Arnold representation theorem W
- Universal approximation theorem by Cybenko W
- Deep neural network theorem Mark
- Inverse function theorem and Jacobian W
- No free lunch theorem by Wolpert W
- RKHS by Aronszajn and Mercer's theorem W
- Representer theorem by Schölkopf, Herbrich, and Smola W
- Convolution theorem (FT, convolution, correlation with CNN examples) W
- Fourier inversion theorem W
- Wiener–Khinchin theorem about autocorrelation and spectral decomposition W
- Parseval's theorem (and uniform, non-uniform convergence) W
- Probably approximately correct learning with the theorem about compression means learnability
- Bernstein–von Mises theorem W
- Holland's schema theorem W
- Variational approximation
- Convergence of random variables and Kloek's theorem W
- Exponential family of distributions and Nelder's theorem
- Multi-armed bandit theorem
- Copulas and Sklar's theorem W
- Boosting theorem Freud, Shapire, 1996, 1995
- Bootstrap theorem (statistical estimations): Ergodic theorem
Each class contains
- A lecturer's talk on one of fundamental theorems (\(40' = 30' + 10'\) discussion)
- Two students' talks (each \(20' = 15' + 5'\) discussion)
Each student delivers two talks
- On a theorem, which is formulated in a paper from the list of student thesis work's references
- On a theorem, which is formulated and proved by the student
It is welcome to
- Make variants of our formulations and proofs
- Re-formulate significant messages of researchers and formulate these messages as theorems
Plan of the talk
- Introduction: the main message briefly
- If necessary (it could be introduced during the talk)
- Axiom sets
- Definitions
- Algebraic structures
- Notations
- Theorem formulation and exact proof
- The author's variant of the proof could be ameliorated
- Corollaries
- Theorem significance and applications
Typography
- As one (or two) text page example, template to download
- Please
- set the font size \(\geqslant 14\)pt
- include plots, diagrams, freehand drawings
The organization
- GitHub project to upload your text Intelligent-Systems-Phystech/FundamentalTheoremsML to the group folder upload the pdf, tex, fig files named as Surname2021Literature, Surname2021Research
- See the Youtube channel Machine Learning
- Spring semester, Wednesdays 14:30 at Zoom m1p.org/go_zoom
Scoring
- Talks and text 0-4 points, according to comparison
- Out-of-schedule drops a half
- The exam 2 points: schemes of proof of various theorems
- time-limit test (as Physics state exam) and discussion
- theorem formulation and poof scheme are hand-written
- two random theorems from the list below, 10 min to write the text
Theorem types
- Uniqueness, existence
- Universality
- Convergence
- Complexity
- Properties of estimations
- Bounds
Schedule
Spring semester 2021
Student talks
Speaker | References |
---|---|
Bishuk Anton | 17.2 link |
Weiser Kirill | 17.2 link, link |
Grebenkova Olga | 24.2 link |
Gunaev Ruslan | 24.2 link |
Zholobov Vladimir | 3.3 link |
Islamov Rustem | 3.3 link |
Pankratov Victor | 10.3 link |
Savelyev Nikolay | 10.3 link |
Filatov Andrey | 10.3 link |
Filippova Anastasia | 17.3 link |
Khar Alexandra | 17.3 link |
Khristolyubov Maxim | 24.3 link |
Shokorov Vyacheslav | 24.3 link |
Invited talks
Speaker | Link |
---|---|
Strijov, Potanin | 10.2 link |
Mark Potanin | 17.2 link |
Mark Potanin | 24.2 link |
Andriy Grabovyi | 10.3 link |
Andriy Grabovyi | 17.3 link |
Andriy Grabovyi | 24.3 link |
Mark Potanin | 31.3 link |
Out of schedule
- Three works by Greg Yang arXiv:1910.12478, arXiv:2006.14548, arXiv:2009.10685 Youtube Rus
- Theorems on flows by Johann Brehmera and Kyle Cranmera arXiv:2003.13913v2
References
- Mathematical statistics by A.A. Borovkov, 1998
- Learning Theory from First Principles by Francis Bach, 2021
- Theoretical foundations of potential function method in pattern recognition by M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer // Avtomatica i Telemekhanica, 1964. Vol. 25, pp. 917-936.
Proof techniques
- Proofs and Mathematical Reasoning by Agata Stefanowicz, 2014
- The nuts and bolts of proofs by Antonella Cupillari, 2013
- Theorems, Corollaries, Lemmas, and Methods of Proof by Richard J. Rossi, 1956
- Problem Books in Mathematics by P.R. Halmos (editor), 1990
- Les contre-exemples en mathématique par Bertrand Hauchecorne, 2007
- Kolmogorov and Mathematical Logic by Vladimir A. Uspensky // The Journal of Symbolic Logic, Vol. 57, No. 2 (Jun., 1992), 385-412.
- Что такое аксиоматический метод? В.А. Успенский, 2001
- Аксиоматический метод. Е.Е. Золин, 2015
Methodology
- Introduction to Metamathematics by Stephen Cole Kleene, 1950
- Science and Method by Henry Poincare, 1908
- A Summary of Scientific Method by Peter Kosso, 2011
- Being a Researcher: An Informatics Perspective by Carlo Ghezzi, 2020
- The definitive glossary of higher mathematical jargon by Math Vault, 2015
- The definitive guide to learning higher mathematics: 10 principles to mathematical transcendence by Math Vault, 2020
- List of mathematical jargon on Wikipedia
- Пикабу. Типичные методы доказательства, 2018 (если вы чувствуете, что несет не туда)