Difference between revisions of "Fundamental theorems"

From Research management course
Jump to: navigation, search
 
(45 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Fundamental theorems of Machine learning
+
{{#seo:
 +
|title=Fundamental Theorems of Machine Learning
 +
|titlemode=replace
 +
|keywords=Fundamental theorems of Machine Learning
 +
|description=The course Fundamental Theorems of Machine Learning studies techniques and practice of theorem formulations and proofs in machine learning.
 +
}}
 +
==Fundamental theorems of Machine Learning with proofs==
  
Фундаментальные теоремы машинного обучения
+
The goal of the course is to boost the quality of bachelor's and master's thesis works; to make the results of student scientific research well-founded. The course studies techniques and practice of theorem formulations and proofs in machine learning.  
1. Причины: Теорема - краткое сообщение о наиболее важных результатах области.
 
2. Теорема делает область математической в силу общности и строгости.
 
3. теоремы лежат в основе математики, они также играют центральную роль в её эстетике
 
4. Основная теорема линейной алгебры - не нужна (но нужна в контексте СВД) https://www.engineering.iastate.edu/~julied/classes/CE570/Notes/strangpaper.pdf
 
5. Основная теорема статистики - нужна.
 
6. Должна быть показана связь между различными областями машинного обучения
 
7. Вероятность, обоснованность, порождение и выбор, корректность по Адамару, снижение размерности, сходимость алгоритмов
 
  
How direct narration transform to fast narration?  
+
Why one needs to convey an important message, a scientific result as a theorem?
 +
# Theorems are the most important messages in the field of research.
 +
# Theorems present results in the language of mathematics by generality and rigor.
 +
# Theorems are at the heart of mathematics and play a central role in its aesthetics.
  
How to find, state and prove theorems in your work?
+
Theorems present the message immediately and leave reasoning after. The direct narration puts reason first and the results after that.
 +
* How does direct narration transform into fast narration?
 +
* How to find, state, and prove theorems in our work?
  
==Мотивация и план курса==
+
This course shows both narration styles. It refers to our educational study and our work experience:
 
+
# Educational mimic progression
Цель курса — повысить качество студенческих научных работ на кафедре, сделать статьи и дипломные работы более обоснованными, изучить технику и практику формулировок доказательства теорем в области машинного обучения. Результат курса - теоретически обоснованные сообщения дипломных работ бакалавра.
+
#* Definition <math>\to</math> (Axiom set) <math>\to</math> Theorem  <math>\to</math> Proof  <math>\to</math> Corollaries <math>\to</math> Examples <math>\to</math> Impact to applications
 
+
# Scientific discovery progression
[http://bit.ly/MLTh_21  Короткая ссылка bit.ly/MLTh_21]
+
#* Application problems <math>\to</math> Problem generalisations  <math>\to</math>  Useful algebraic platform <math>\to</math> Definitions <math>\to</math> Axiom set
===Каждое занятие курса===
+
So in our practice, we mimic the first part of the progression, then learn to discover patterns and formulate theorems. The theoretical talks give us a series of good examples.
# Доклад лектора — одна из фундаментальных теорем (40' = 30' + 10' обсуждение)
 
# Два студенческих доклада (20'=15'+5' обсуждение)
 
 
 
===Каждый студент делает два доклада===
 
# С теоремой взятой из литературы, по которой выполняется дипломная работа
 
# С собственной теоремой, обосновывающей решение, предлагаемое в дипломное работе
 
 
 
===Приветствуются!===
 
* Варианты собственных формулировок и доказательств
 
* Значимые высказывания ведущих исследователей, оформленные в виде теорем (пример изложения Кристофера Бишопа)
 
 
 
===План изложения материала===
 
# Введение: основное сообщение теоремы в понятном (не обязательно строгом) изложении
 
# Вводная часть: определение терминов и сведения, необходимые для изложения (обозначения можно использовать авторские или [ссылка на обозначения Б.А.С.])
 
# Формулировка и доказательство теоремы в '''строгом''' изложении (но можно отходить от авторского варианта, если это нужно для ясности)
 
# Значимость теоремы: ссылки или обзор методов и приложений, иллюстрирующих теорему
 
 
 
===Оформление===
 
* В виде страницы текста, [https://drive.google.com/file/d/17AcostCAVSKfgK52MAelsSy_dC-sxDR4/view?usp=sharing пример], [https://www.overleaf.com/read/wsmczggkzpgj шаблон]
 
* Слайды приветствуются, но необязательны
 
* Очень приветствуются поясняющие рисунки, диаграммы, графики (можно от руки)
 
 
 
===Материалы курса===
 
* Проект на GitHub для загрузки докладов [https://github.com/Intelligent-Systems-Phystech/FundamentalTheoremsML Intelligent-Systems-Phystech/FundamentalTheoremsML]
 
** В папку группы 674 загрузить pdf, tex, fig с именем файла
 
** Surname2021Literature, Surname2021Research,
 
* Канал Youtube [https://www.youtube.com/channel/UC90B3Y_FbBRrRQk5TCiKgSA Machine Learning]
 
* Ссылка на сессию Zoom m1p.org/go_zoom
 
 
 
===Оценивание===
 
* Доклад и материалы к нему 0-4 балла (по результатам сравнения работ)
 
* Не по расписанию делим на два
 
* Экзамен 2 балла
 
 
 
==Расписание докладов==
 
{|class="wikitable"
 
|-
 
! Докладчик
 
! Литература
 
! Диплом
 
|-
 
|Бишук Антон
 
|17.2 [https://github.com/ApostolAnt/Projects/blob/master/______.pdf link]
 
|31.3 link
 
|-
 
|Вайсер Кирилл 

 
|17.2 [https://github.com/Nerkan78/IntelligentSystems/blob/main/Diploma/VayserKirill2020/MatheronRule.pdf link]
 
|31.3 [https://github.com/Nerkan78/IntelligentSystems/blob/main/Diploma/VayserKirill2020/ErrorAnalysis.pdf link]
 
|-
 
|Гребенькова Ольга 

 
|24.2 [https://github.com/Intelligent-Systems-Phystech/Grebenkova-BS-Thesis/raw/main/ELBo.pdf link]
 
|7.4 link
 
|-
 
|Гунаев Руслан
 
|24.2 [https://github.com/Gunaev/Gunaev_BS-thesis/blob/main/th_diplom.pdf link]
 
|7.4 link

 
|-
 
|Жолобов Владимир 

 
|3.3 [https://github.com/Intelligent-Systems-Phystech/Zholobov-BS-Thesis/blob/main/Zholobov_thesis.pdf link]
 
|14.4 link
 
|-
 
|Исламов Рустем
 
|3.3 [https://github.com/Intelligent-Systems-Phystech/Islamov-BS-Thesis/blob/main/Fundamental%20theorems%20on%20Machine%20Learning/First%20report/Stochastic%20Newton%20method.pdf link]
 
|14.4 link
 
|-
 
|Панкратов Виктор  

 
|10.3 [https://github.com/Intelligent-Systems-Phystech/Pankratov_BS_Thesis/blob/main/link1.pdf link]
 
|21.4 link
 
|-
 
|Савельев Николай
 
|10.3 [https://github.com/Intelligent-Systems-Phystech/Savelev-BS-Thesis/raw/main/Prediction_Learning_and_Games-%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B-18-21.pdf link]
 
|21.4 link
 
|-
 
|Филатов Андрей
 
|10.3 [https://github.com/Intelligent-Systems-Phystech/Filatov-BS-Thesis/blob/main/Fundamental%20Theorems/Theorem.pdf link]
 
|21.4 link
 
|-
 
|Филиппова Анастасия 

 
|17.3 link
 
|28.4 link
 
|-
 
|Харь Александра 

 
|17.3 [https://github.com/Intelligent-Systems-Phystech/Khar-BS-Thesis/blob/main/otchet_1.pdf link]
 
|28.4 link
 
|-
 
|Христолюбов Максим
 
|24.3 [https://github.com/Intelligent-Systems-Phystech/Khristolyubov-BS-Thesis/blob/main/paper/Proof_of_the_theorem.pdf link]
 
|5.5 link
 
|-
 
|Шокоров Вячеслав 

 
|24.3 [https://github.com/Intelligent-Systems-Phystech/Shokorov-BS-Thesis/blob/main/report/VKR_Theorem.pdf link]
 
|5.5 link
 
|-
 
|}
 
 
 
==Lecture topics==
 
  
 +
==Theorems==
 +
# Fundamental theorem of linear algebra [https://www.engineering.iastate.edu/~julied/classes/CE570/Notes/strangpaper.pdf S]
 
# Singular values decomposition and spectral theorem [https://en.wikipedia.org/wiki/Spectral_theorem W]
 
# Singular values decomposition and spectral theorem [https://en.wikipedia.org/wiki/Spectral_theorem W]
 
# Gauss–Markov-(Aitken) theorem [https://en.wikipedia.org/wiki/Gauss–Markov_theorem W]
 
# Gauss–Markov-(Aitken) theorem [https://en.wikipedia.org/wiki/Gauss–Markov_theorem W]
Line 123: Line 33:
 
# Kolmogorov–Arnold representation theorem [https://en.wikipedia.org/wiki/Kolmogorov–Arnold_representation_theorem W]
 
# Kolmogorov–Arnold representation theorem [https://en.wikipedia.org/wiki/Kolmogorov–Arnold_representation_theorem W]
 
# Universal approximation theorem by Cybenko [https://en.wikipedia.org/wiki/Universal_approximation_theorem W]
 
# Universal approximation theorem by Cybenko [https://en.wikipedia.org/wiki/Universal_approximation_theorem W]
# Deep neural network theorem  
+
# Deep neural network theorem [https://github.com/MarkPotanin/GeneticOpt/blob/master/Potanin2019NNStructure_APX.pdf Mark]
 +
# Inverse function theorem and Jacobian [https://en.wikipedia.org/wiki/Inverse_function_theorem W]
 
# No free lunch theorem by Wolpert [https://en.wikipedia.org/wiki/No_free_lunch_theorem W]
 
# No free lunch theorem by Wolpert [https://en.wikipedia.org/wiki/No_free_lunch_theorem W]
 
# RKHS by Aronszajn and Mercer's theorem [https://en.wikipedia.org/wiki/Mercer%27s_theorem W]
 
# RKHS by Aronszajn and Mercer's theorem [https://en.wikipedia.org/wiki/Mercer%27s_theorem W]
Line 139: Line 50:
 
# Multi-armed bandit theorem
 
# Multi-armed bandit theorem
 
# Copulas and Sklar's theorem [https://en.wikipedia.org/wiki/Copula_(probability_theory) W]
 
# Copulas and Sklar's theorem [https://en.wikipedia.org/wiki/Copula_(probability_theory) W]
 +
# Boosting theorem Freud, Shapire, 1996, 1995
 +
# Bootstrap theorem (statistical estimations): Ergodic theorem
 +
 +
===Each class contains===
 +
# A lecturer's talk on one of fundamental theorems (<math>40' = 30' + 10'</math> discussion)
 +
# Two students' talks  (each <math>20' = 15' + 5'</math> discussion)
 +
 +
===Each student delivers two talks===
 +
# On a theorem, which is formulated in a paper from the list of student thesis work's references
 +
# On a theorem, which is formulated and proved by the student
 +
 +
===It is welcome to===
 +
* Make variants of our formulations and proofs
 +
* Re-formulate significant messages of researchers and formulate these messages as theorems
 +
 +
===Plan of the talk===
 +
# Introduction: the main message briefly
 +
# If necessary (it could be introduced during the talk)
 +
## Axiom sets
 +
## Definitions
 +
## Algebraic structures
 +
## Notations
 +
# Theorem formulation and exact proof
 +
## The author's variant of the proof could be ameliorated
 +
# Corollaries
 +
# Theorem significance and applications
 +
 +
===Typography===
 +
* As one (or two) text page [https://drive.google.com/file/d/17AcostCAVSKfgK52MAelsSy_dC-sxDR4/view?usp=sharing example], [https://www.overleaf.com/read/wsmczggkzpgj template to download]
 +
* Please
 +
** set the font size <math>\geqslant 14</math>pt
 +
** include plots, diagrams, freehand drawings
 +
 +
===The organization===
 +
* GitHub project to upload your text [https://github.com/Intelligent-Systems-Phystech/FundamentalTheoremsML  Intelligent-Systems-Phystech/FundamentalTheoremsML] to the group folder upload the pdf, tex, fig files named as Surname2021Literature, Surname2021Research
 +
* See the Youtube channel [https://www.youtube.com/channel/UC90B3Y_FbBRrRQk5TCiKgSA Machine Learning]
 +
* Spring semester, Wednesdays 14:30 at Zoom m1p.org/go_zoom
 +
 +
===Scoring===
 +
* Talks and text 0-4 points, according to comparison
 +
* Out-of-schedule drops a half
 +
* The exam 2 points: schemes of proof of various theorems
 +
** time-limit test (as Physics state exam) and discussion
 +
** theorem formulation and poof scheme are hand-written
 +
** two random theorems from the list below, 10 min to write the text
  
 
==Theorem types==
 
==Theorem types==
* Существование и единственность (NN)
+
<!--* Должна быть показана связь между различными областями машинного обучения
* Универсальность
+
* Вероятность, обоснованность, порождение и выбор, корректность по Адамару, снижение размерности, сходимость алгоритмов -->
* Сходимость[https://www.youtube.com/watch?v=Ajar_6MAOLw]  
+
* Uniqueness, existence
**Поточечно  
+
* Universality
 +
* Convergence <!--[https://www.youtube.com/watch?v=Ajar_6MAOLw] -->
 +
<!--Поточечно  
 
**Равномерно
 
**Равномерно
 
**По мере  
 
**По мере  
Line 162: Line 120:
 
**Эффективная
 
**Эффективная
 
**Omitted-variable bias
 
**Omitted-variable bias
* almost sure, almost everywhere
+
* Almost sure, almost everywhere
 +
-->
 +
* Complexity
 +
* Properties of estimations
 +
* Bounds
  
==Talks==
+
==Schedule==
# Three works by Greg Yang [https://arxiv.org/pdf/1910.12478.pdf arXiv:1910.12478], [https://arxiv.org/pdf/2006.14548 arXiv:2006.14548], [https://arxiv.org/pdf/2009.10685.pdf arXiv:2009.10685] [https://www.youtube.com/watch?v=kc9ll6B-xVU&list=PLt1IfGj6-_-ewBQJDVMJOJNlW5AbY6D3p&index=4&fbclid=IwAR3kIUQZWsh9j_Xp2TYb5ZmcsH7nFDIpCuRnmeoxoRJyPuxKvFyxTRI3ypY Youtube Rus]
+
Spring semester 2021
# Theorems on flows by Johann Brehmera and Kyle Cranmera [https://arxiv.org/pdf/2003.13913v2.pdf arXiv:2003.13913v2]
+
===Student talks===
 +
{|class = "wikitable"
 +
|-
 +
! Speaker
 +
! References
 +
|-
 +
| Bishuk Anton
 +
| 17.2 [https://github.com/ApostolAnt/Projects/blob/master/______.pdf link]
 +
|-
 +
| Weiser Kirill
 +
| 17.2 [https://github.com/Nerkan78/IntelligentSystems/blob/main/Diploma/VayserKirill2020/MatheronRule.pdf link], [https://github.com/Nerkan78/IntelligentSystems/blob/main/Diploma/VayserKirill2020/ErrorAnalysis.pdf link]
 +
|-
 +
| Grebenkova Olga
 +
| 24.2 [https://github.com/Intelligent-Systems-Phystech/Grebenkova-BS-Thesis/raw/main/ELBo.pdf link]
 +
|-
 +
| Gunaev Ruslan
 +
| 24.2 [https://github.com/Gunaev/Gunaev_BS-thesis/blob/main/th_diplom.pdf link]
 +
|-
 +
| Zholobov Vladimir
 +
| 3.3 [https://github.com/Intelligent-Systems-Phystech/Zholobov-BS-Thesis/blob/main/Zholobov_thesis.pdf link]
 +
|-
 +
| Islamov Rustem
 +
| 3.3 [https://github.com/Intelligent-Systems-Phystech/Islamov-BS-Thesis/blob/main/Fundamental%20theorems%20on%20Machine%20Learning/First%20report/Stochastic%20Newton%20method.pdf link]
 +
|-
 +
| Pankratov Victor
 +
| 10.3 [https://github.com/Intelligent-Systems-Phystech/Pankratov_BS_Thesis/blob/main/link1.pdf link]
 +
|-
 +
| Savelyev Nikolay
 +
| 10.3 [https://github.com/Intelligent-Systems-Phystech/Savelev-BS-Thesis/raw/main/Prediction_Learning_and_Games-B-18-21.pdf link]
 +
|-
 +
| Filatov Andrey
 +
| 10.3 [https://github.com/Intelligent-Systems-Phystech/Filatov-BS-Thesis/blob/main/Fundamental%20Theorems/Theorem.pdf link]
 +
|-
 +
| Filippova Anastasia
 +
| 17.3 link
 +
|-
 +
| Khar Alexandra
 +
| 17.3 [https://github.com/Intelligent-Systems-Phystech/Khar-BS-Thesis/blob/main/otchet_1.pdf link]
 +
|-
 +
| Khristolyubov Maxim
 +
| 24.3 [https://github.com/Intelligent-Systems-Phystech/Khristolyubov-BS-Thesis/blob/main/paper/Proof_of_the_theorem.pdf link]
 +
|-
 +
| Shokorov Vyacheslav
 +
| 24.3 [https://github.com/Intelligent-Systems-Phystech/Shokorov-BS-Thesis/blob/main/report/VKR_Theorem.pdf link]
 +
|-
 +
|}
  
==Расписание лекций==
+
===Invited talks===
 
{|class="wikitable"
 
{|class="wikitable"
 
|-
 
|-
! Дата  
+
<!--! Дата  
! Тема
+
! Тема-->
! Лектор
+
! Speaker
! Ссылки
+
! Link
 
|-
 
|-
|10 февраля
+
<!--|10 февраля
|Вводное занятие (и Основная теорема статистики)
+
|Вводное занятие (и Основная теорема статистики)-->
|Стрижов, Потанин
+
| Strijov, Potanin
|[https://drive.google.com/file/d/17AcostCAVSKfgK52MAelsSy_dC-sxDR4/view?usp=sharing link]
+
|10.2 [https://drive.google.com/file/d/17AcostCAVSKfgK52MAelsSy_dC-sxDR4/view?usp=sharing link]
 
|-
 
|-
|17 февраля
+
<!--|17 февраля
|Теорема сходимости перцептрона Ф.Розенблатта, Блока, Джозефа, Кестена
+
|Теорема сходимости перцептрона Ф.Розенблатта, Блока, Джозефа, Кестена-->
|Марк Потанин
+
| Mark Potanin
|[https://drive.google.com/file/d/1Pu8mvexKkO45ED4MWSH-sZDusNNTgMpC/view?usp=sharing link]
+
|17.2 [https://drive.google.com/file/d/1Pu8mvexKkO45ED4MWSH-sZDusNNTgMpC/view?usp=sharing link]
 
|-
 
|-
|24 февраля
+
<!--|24 февраля
|Теоремы Колмогорова и Арнольда, теорема об универсальном аппроксиматоре Цыбенко, теорема о глубоких нейросетях  
+
|Теоремы Колмогорова и Арнольда, теорема об универсальном аппроксиматоре Цыбенко, теорема о глубоких нейросетях -->
|Марк Потанин
+
|Mark Potanin
|[https://drive.google.com/file/d/1Thm73TYyLXhoHNA_4uhyFB9Im26Ctjxp/view?usp=sharing link]
+
|24.2 [https://drive.google.com/file/d/1Thm73TYyLXhoHNA_4uhyFB9Im26Ctjxp/view?usp=sharing link]
 
|-
 
|-
|10 марта
+
<!--|10 марта
|[[Media:BershteinFonMises.pdf|Берштейн - фон Мизес]]
+
|[[Media:BershteinFonMises.pdf|Берштейн - фон Мизес]]-->
|Андрей Грабовой
+
|Andriy Grabovyi
|[[Media:BershteinFonMises.pdf|link]]
+
|10.3 [http://www.machinelearning.ru/wiki/images/3/33/BershteinFonMises.pdf link]
 
|-
 
|-
|17 марта
+
<!--|17 марта
|[[Media:BershteinFonMises.pdf|Берштейн - фон Мизес]] (продолжение)
+
|[[Media:BershteinFonMises.pdf|Берштейн - фон Мизес]] (продолжение)-->
|Андрей Грабовой
+
|Andriy Grabovyi
|[[Media:BershteinFonMises.pdf|link]]
+
|17.3 [http://www.machinelearning.ru/wiki/images/3/33/BershteinFonMises.pdf link]
 
|-
 
|-
|24 марта  
+
<!--|24 марта  
|[[Media:PAC_learning_compress.pdf|РАС обучаемость, теорема о том, что сжатие предполагает обучаемость]]
+
|[[Media:PAC_learning_compress.pdf|РАС обучаемость, теорема о том, что сжатие предполагает обучаемость]]-->
|Андрей Грабовой
+
|Andriy Grabovyi
|[[Media:PAC_learning_compress.pdf|link]]
+
|24.3 [http://www.machinelearning.ru/wiki/images/b/ba/PAC_learning_compress.pdf link]
 
|-
 
|-
|31 марта   
+
<!--|31 марта   
|Сходимость про вероятности при выборе моделей
+
|Сходимость про вероятности при выборе моделей-->
|Марк Потанин
+
|Mark Potanin
|[https://drive.google.com/file/d/1-rtOJtjivRs0TwOga8-MLaBEzCcUyD0H/view?usp=sharing link]
+
|31.3 [https://drive.google.com/file/d/1-rtOJtjivRs0TwOga8-MLaBEzCcUyD0H/view?usp=sharing link]
 
|-
 
|-
|7 апреля  
+
<!--|7 апреля  
|Теорема о минимальной длине описания <!--Метрические пространства: RKHS Аронжайн, теорема Мерсера-->
+
|Теорема о минимальной длине описания Метрические пространства: RKHS Аронжайн, теорема Мерсера
|Олег Бахтеев <!--Алексей Гончаров-->
+
|Oleg Bakhteev
| link
+
|7.4 link
 
|-
 
|-
 
|14 апреля  
 
|14 апреля  
 
|Теорема о свертке (Фурье, свертка, автокорреляция) с примерами сверточных сетей  
 
|Теорема о свертке (Фурье, свертка, автокорреляция) с примерами сверточных сетей  
|Филипп Никитин
+
|Philipp Nikitin
| link
+
|14.4 link
 
|-
 
|-
 
|21 апреля
 
|21 апреля
 
|Representer theorem, Schölkopf, Herbrich, and Smola  
 
|Representer theorem, Schölkopf, Herbrich, and Smola  
|Андрей Грабовой
+
|Andriy Grabovyi
| link
+
|21.4 link
 
|-
 
|-
 
|28 апреля
 
|28 апреля
 
|Обратная теорема Фурье, теорема Парсеваля (равномерная и неравномерная сходимость)
 
|Обратная теорема Фурье, теорема Парсеваля (равномерная и неравномерная сходимость)
|Филипп Никитин
+
|Philipp Nikitin
| link
+
|28.4 link
 
|-
 
|-
|5 мая  
+
5 мая  
 
|Вариационная аппроксимация, теорема о байесовском выборе моделей
 
|Вариационная аппроксимация, теорема о байесовском выборе моделей
|Олег Бахтеев
+
|Oleg Bakhteev
| link
+
|5.5 link
 
|-
 
|-
|12 мая  
+
12 мая  
 
|Разбор и обсуждение письменных работ: теоремы их доказательства (входящие в диплом)
 
|Разбор и обсуждение письменных работ: теоремы их доказательства (входящие в диплом)
|Потанин, Стрижов
+
| Potanin, Strijov
|  
+
|12.5 Discussion
 
|-
 
|-
|26 мая  
+
26 мая  
 
|Экзамен: схемы доказательства различных теорем (тест на время, как в гос по физике, и обсуждение)
 
|Экзамен: схемы доказательства различных теорем (тест на время, как в гос по физике, и обсуждение)
|Потанин, Адуенко, Бахтеев
+
|Potanin, Aduenko, Bakhteev
|  
+
|26.5 Exam
 
|-
 
|-
|
+
 
 
|Теорема о бесплатных обедах в машинном обучении, Волперт
 
|Теорема о бесплатных обедах в машинном обучении, Волперт
 
|Радослав Нейчев  
 
|Радослав Нейчев  
Line 255: Line 262:
 
|Радослав Нейчев  
 
|Радослав Нейчев  
 
|  
 
|  
|-
+
|--->
 
|}
 
|}
 +
 +
===Out of schedule ===
 +
# Three works by Greg Yang [https://arxiv.org/pdf/1910.12478.pdf arXiv:1910.12478], [https://arxiv.org/pdf/2006.14548 arXiv:2006.14548], [https://arxiv.org/pdf/2009.10685.pdf arXiv:2009.10685] [https://www.youtube.com/watch?v=kc9ll6B-xVU&list=PLt1IfGj6-_-ewBQJDVMJOJNlW5AbY6D3p&index=4&fbclid=IwAR3kIUQZWsh9j_Xp2TYb5ZmcsH7nFDIpCuRnmeoxoRJyPuxKvFyxTRI3ypY Youtube Rus]
 +
# Theorems on flows by Johann Brehmera and Kyle Cranmera [https://arxiv.org/pdf/2003.13913v2.pdf arXiv:2003.13913v2]
  
 
==References==
 
==References==
 +
 +
# Mathematical statistics by A.A. Borovkov, 1998
 +
# [https://www.di.ens.fr/~fbach/ltfp_book.pdf Learning Theory from First Principles] by Francis Bach, 2021 <!--https://www.di.ens.fr/~fbach/learning_theory_class/index.html-->
 +
# [https://cs.uwaterloo.ca/~y328yu/classics/kernel.pdf Theoretical foundations of potential function method in pattern recognition] by M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer // Avtomatica i Telemekhanica, 1964. Vol. 25, pp. 917-936.
 +
<!-- Айзерман М.А., Браверман Э.М., Розоноэр Л.И. Метод потенциальных функций в теории обучения машин, 1970 (глава про сходимость)-->
 +
 
===Proof techniques===
 
===Proof techniques===
 
# [https://www.birmingham.ac.uk/Documents/college-eps/college/stem/Student-Summer-Education-Internships/Proof-and-Reasoning.pdf Proofs and Mathematical Reasoning by Agata Stefanowicz, 2014]
 
# [https://www.birmingham.ac.uk/Documents/college-eps/college/stem/Student-Summer-Education-Internships/Proof-and-Reasoning.pdf Proofs and Mathematical Reasoning by Agata Stefanowicz, 2014]
# Mathematical statistics by A.A. Borovkov, 1998
 
 
# The nuts and bolts of proofs by Antonella Cupillari, 2013
 
# The nuts and bolts of proofs by Antonella Cupillari, 2013
 +
# Theorems, Corollaries, Lemmas, and Methods of Proof by Richard J. Rossi, 1956
 +
#  Problem Books in Mathematics by P.R. Halmos (editor), 1990
 +
# Les contre-exemples en mathématique par Bertrand Hauchecorne, 2007
 
# [http://fulviofrisone.com/attachments/article/452/Kolmogorov%20And%20Mathematical%20Logic.pdf Kolmogorov and Mathematical Logic] by Vladimir A. Uspensky // The Journal of Symbolic Logic, Vol. 57, No. 2 (Jun., 1992), 385-412.  
 
# [http://fulviofrisone.com/attachments/article/452/Kolmogorov%20And%20Mathematical%20Logic.pdf Kolmogorov and Mathematical Logic] by Vladimir A. Uspensky // The Journal of Symbolic Logic, Vol. 57, No. 2 (Jun., 1992), 385-412.  
 
# [http://www.vixri.com/d/Uspenskij%20V.A.%20_Chto%20takoe%20aksiomaticheskij%20metod.pdf Что такое аксиоматический метод?] В.А. Успенский, 2001
 
# [http://www.vixri.com/d/Uspenskij%20V.A.%20_Chto%20takoe%20aksiomaticheskij%20metod.pdf Что такое аксиоматический метод?] В.А. Успенский, 2001
 
# [http://lpcs.math.msu.su/~zolin/ax/pdf/2015_Axiomatic_method_Zolin_Lectures.pdf Аксиоматический метод]. Е.Е. Золин, 2015
 
# [http://lpcs.math.msu.su/~zolin/ax/pdf/2015_Axiomatic_method_Zolin_Lectures.pdf Аксиоматический метод]. Е.Е. Золин, 2015
# Айзерман М.А., Браверман Э.М., Розоноэр Л.И. Метод потенциальных функций в теории обучения машин, 1970 (глава про сходимость)
 
  
 
===Methodology===
 
===Methodology===

Latest revision as of 22:20, 11 February 2024

Fundamental theorems of Machine Learning with proofs

The goal of the course is to boost the quality of bachelor's and master's thesis works; to make the results of student scientific research well-founded. The course studies techniques and practice of theorem formulations and proofs in machine learning.

Why one needs to convey an important message, a scientific result as a theorem?

  1. Theorems are the most important messages in the field of research.
  2. Theorems present results in the language of mathematics by generality and rigor.
  3. Theorems are at the heart of mathematics and play a central role in its aesthetics.

Theorems present the message immediately and leave reasoning after. The direct narration puts reason first and the results after that.

  • How does direct narration transform into fast narration?
  • How to find, state, and prove theorems in our work?

This course shows both narration styles. It refers to our educational study and our work experience:

  1. Educational mimic progression
    • Definition \(\to\) (Axiom set) \(\to\) Theorem \(\to\) Proof \(\to\) Corollaries \(\to\) Examples \(\to\) Impact to applications
  2. Scientific discovery progression
    • Application problems \(\to\) Problem generalisations \(\to\) Useful algebraic platform \(\to\) Definitions \(\to\) Axiom set

So in our practice, we mimic the first part of the progression, then learn to discover patterns and formulate theorems. The theoretical talks give us a series of good examples.

Theorems

  1. Fundamental theorem of linear algebra S
  2. Singular values decomposition and spectral theorem W
  3. Gauss–Markov-(Aitken) theorem W
  4. Principal component analysis W
  5. Karhunen–Loève theorem W
  6. Kolmogorov–Arnold representation theorem W
  7. Universal approximation theorem by Cybenko W
  8. Deep neural network theorem Mark
  9. Inverse function theorem and Jacobian W
  10. No free lunch theorem by Wolpert W
  11. RKHS by Aronszajn and Mercer's theorem W
  12. Representer theorem by Schölkopf, Herbrich, and Smola W
  13. Convolution theorem (FT, convolution, correlation with CNN examples) W
  14. Fourier inversion theorem W
  15. Wiener–Khinchin theorem about autocorrelation and spectral decomposition W
  16. Parseval's theorem (and uniform, non-uniform convergence) W
  17. Probably approximately correct learning with the theorem about compression means learnability
  18. Bernstein–von Mises theorem W
  19. Holland's schema theorem W
  20. Variational approximation
  21. Convergence of random variables and Kloek's theorem W
  22. Exponential family of distributions and Nelder's theorem
  23. Multi-armed bandit theorem
  24. Copulas and Sklar's theorem W
  25. Boosting theorem Freud, Shapire, 1996, 1995
  26. Bootstrap theorem (statistical estimations): Ergodic theorem

Each class contains

  1. A lecturer's talk on one of fundamental theorems (\(40' = 30' + 10'\) discussion)
  2. Two students' talks (each \(20' = 15' + 5'\) discussion)

Each student delivers two talks

  1. On a theorem, which is formulated in a paper from the list of student thesis work's references
  2. On a theorem, which is formulated and proved by the student

It is welcome to

  • Make variants of our formulations and proofs
  • Re-formulate significant messages of researchers and formulate these messages as theorems

Plan of the talk

  1. Introduction: the main message briefly
  2. If necessary (it could be introduced during the talk)
    1. Axiom sets
    2. Definitions
    3. Algebraic structures
    4. Notations
  3. Theorem formulation and exact proof
    1. The author's variant of the proof could be ameliorated
  4. Corollaries
  5. Theorem significance and applications

Typography

  • As one (or two) text page example, template to download
  • Please
    • set the font size \(\geqslant 14\)pt
    • include plots, diagrams, freehand drawings

The organization

Scoring

  • Talks and text 0-4 points, according to comparison
  • Out-of-schedule drops a half
  • The exam 2 points: schemes of proof of various theorems
    • time-limit test (as Physics state exam) and discussion
    • theorem formulation and poof scheme are hand-written
    • two random theorems from the list below, 10 min to write the text

Theorem types

  • Uniqueness, existence
  • Universality
  • Convergence
  • Complexity
  • Properties of estimations
  • Bounds

Schedule

Spring semester 2021

Student talks

Speaker References
Bishuk Anton 17.2 link
Weiser Kirill 17.2 link, link
Grebenkova Olga 24.2 link
Gunaev Ruslan 24.2 link
Zholobov Vladimir 3.3 link
Islamov Rustem 3.3 link
Pankratov Victor 10.3 link
Savelyev Nikolay 10.3 link
Filatov Andrey 10.3 link
Filippova Anastasia 17.3 link
Khar Alexandra 17.3 link
Khristolyubov Maxim 24.3 link
Shokorov Vyacheslav 24.3 link

Invited talks

Speaker Link
Strijov, Potanin 10.2 link
Mark Potanin 17.2 link
Mark Potanin 24.2 link
Andriy Grabovyi 10.3 link
Andriy Grabovyi 17.3 link
Andriy Grabovyi 24.3 link
Mark Potanin 31.3 link

Out of schedule

  1. Three works by Greg Yang arXiv:1910.12478, arXiv:2006.14548, arXiv:2009.10685 Youtube Rus
  2. Theorems on flows by Johann Brehmera and Kyle Cranmera arXiv:2003.13913v2

References

  1. Mathematical statistics by A.A. Borovkov, 1998
  2. Learning Theory from First Principles by Francis Bach, 2021
  3. Theoretical foundations of potential function method in pattern recognition by M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer // Avtomatica i Telemekhanica, 1964. Vol. 25, pp. 917-936.

Proof techniques

  1. Proofs and Mathematical Reasoning by Agata Stefanowicz, 2014
  2. The nuts and bolts of proofs by Antonella Cupillari, 2013
  3. Theorems, Corollaries, Lemmas, and Methods of Proof by Richard J. Rossi, 1956
  4. Problem Books in Mathematics by P.R. Halmos (editor), 1990
  5. Les contre-exemples en mathématique par Bertrand Hauchecorne, 2007
  6. Kolmogorov and Mathematical Logic by Vladimir A. Uspensky // The Journal of Symbolic Logic, Vol. 57, No. 2 (Jun., 1992), 385-412.
  7. Что такое аксиоматический метод? В.А. Успенский, 2001
  8. Аксиоматический метод. Е.Е. Золин, 2015

Methodology

  1. Introduction to Metamathematics by Stephen Cole Kleene, 1950
  2. Science and Method by Henry Poincare, 1908
  3. A Summary of Scientific Method by Peter Kosso, 2011
  4. Being a Researcher: An Informatics Perspective by Carlo Ghezzi, 2020
  5. The definitive glossary of higher mathematical jargon by Math Vault, 2015
  6. The definitive guide to learning higher mathematics: 10 principles to mathematical transcendence by Math Vault, 2020
  7. List of mathematical jargon on Wikipedia
  8. Пикабу. Типичные методы доказательства, 2018 (если вы чувствуете, что несет не туда)