Difference between revisions of "Step 10"

From Research management course
Jump to: navigation, search
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
We are approaching our goal: responsible project planning. The final item is planning and discussing the computational experiment. The error analysis is a crucial point in building a solid background for our machine-learning model. The visualization of the results of this analysis delivers information to our readers in a comprehensible and persuasive way.
+
We are approaching our goal of responsible project planning. The final item is planning and discussing the computational experiment. The error analysis is crucial in building a solid background for our machine-learning model. Visualizing the results of this analysis delivers information to our readers in a comprehensible and persuasive way.
 +
 
 +
Motivation for the computational experiment planning:
 +
 
 +
„Глядя на лошадиные морды и лица людей, на безбрежный живой поток, поднятый моей волей и мчащийся в никуда по багровой закатной степи, я часто думаю: где я в этом потоке?“ —  Чингисхан (В. Пелевин «Чапаев и Пустота»)
 +
 
 +
– think of your part and of the part you borrow.
  
 
== The seminar ==
 
== The seminar ==
 
# [https://forms.gle/gSjeoEYLg82eohdW6 The warm-up 5-minute test]
 
# [https://forms.gle/gSjeoEYLg82eohdW6 The warm-up 5-minute test]
# Computational experiment and visualizing
+
# Computational experiment and visualizing [[Week 7|see the plan of error analysis]]
 
# Homework discussion
 
# Homework discussion
 
# Project description discussion
 
# Project description discussion
# Final talk announcement
+
# Final talk [[Step 11|announcement]]
  
 
==Resources==
 
==Resources==
Step 9 YouTube [https://www.youtube.com video]
+
Step 10 YouTube [https://www.youtube.com/watch?v=3_S7PWexNCc video]
  
 
==Homework==
 
==Homework==
 
Prepare the coursework: the slides and your talk.   
 
Prepare the coursework: the slides and your talk.   
# Use the template for your slides  
+
# Use this template for your slides [https://github.com/vadim-vic/the-Art-homework/blob/main/Name-Step-3.pdf (the same as in Step 5)]
# See the examples
+
# Use these [http://www.machinelearning.ru/wiki/images/8/84/M1p2022lect7_experiment.pdf slides as guidleies]
 +
# See inspiring examples [https://sourceforge.net/p/mvr/code/HEAD/tree/lectures/MachineLearningResearch/ComputationalExperiment/fig_compilation_slides.pdf?format=raw one] and [http://www.machinelearning.ru/wiki/images/2/25/Fig_compilation_slides_stable.pdf two]
 +
# The slides comprise:
 +
## goal of the experiment,
 +
## data description and general statistics,
 +
## error analysis and expected (handwritten) plots
 
# Load a link to your slides [https://forms.gle/AArrzMbj132tbGKA7 in the form]
 
# Load a link to your slides [https://forms.gle/AArrzMbj132tbGKA7 in the form]

Latest revision as of 17:20, 8 December 2024

We are approaching our goal of responsible project planning. The final item is planning and discussing the computational experiment. The error analysis is crucial in building a solid background for our machine-learning model. Visualizing the results of this analysis delivers information to our readers in a comprehensible and persuasive way.

Motivation for the computational experiment planning:

„Глядя на лошадиные морды и лица людей, на безбрежный живой поток, поднятый моей волей и мчащийся в никуда по багровой закатной степи, я часто думаю: где я в этом потоке?“ — Чингисхан (В. Пелевин «Чапаев и Пустота»)

– think of your part and of the part you borrow.

The seminar

  1. The warm-up 5-minute test
  2. Computational experiment and visualizing see the plan of error analysis
  3. Homework discussion
  4. Project description discussion
  5. Final talk announcement

Resources

Step 10 YouTube video

Homework

Prepare the coursework: the slides and your talk.

  1. Use this template for your slides (the same as in Step 5)
  2. Use these slides as guidleies
  3. See inspiring examples one and two
  4. The slides comprise:
    1. goal of the experiment,
    2. data description and general statistics,
    3. error analysis and expected (handwritten) plots
  5. Load a link to your slides in the form