Difference between revisions of "Week 7"

From m1p.org
Jump to: navigation, search
 
(28 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Make the error and quality analysis. Finalise the computational experiment.
+
{{#seo:
 +
|title=Course My first scientific paper: Week 7
 +
|titlemode=replace
 +
|keywords=My first scientific paper
 +
|description=Course My first scientific paper: The goal of the week is to make the error and quality analysis, and finalize the computational experiment.
 +
}}
 +
Make the error and quality analysis. Finalize the computational experiment.
 +
 
 +
<!--
 +
== E: Error analysis ==
 +
Run a basic experiment, analyze its results.
 +
=== Purpose of analysis ===
 +
Error analysis in computational experiments is the analysis of changes in the error function when the dataset changes, or when the model parameters or the model structure change.
 +
 
 +
It is required to draw the dependence of the error function or quality criterion on the factors affecting this function. For example, on the complexity of the model, on the optimization iteration step, and on the variance of the parameters.
 +
 
 +
Build a comparison table of different models on several samples according to a set of quality criteria: the table "models-datasets-criteria".
 +
 
 +
=== Initial requirements for analysis ===
 +
# The problem of parameter optimization or model selection is set.
 +
# A strategy for splitting the sliding control is specified.
 +
# A set of external (operational) criteria for the quality of the model is specified.
 +
# For a set of splits, a
 +
#* set of values of the optimal parameter vectors is obtained,
 +
#* a set of values of the error function for training and control.
 +
# A set of external criterion values for training and control was obtained.
 +
 
 +
===Analysis of the sample composition===
 +
#Analysis [http://www.machinelearning.ru/wiki/index.php?title=%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%B0%D1%8F_%D0%B2%D1%8B%D0%B1%D0%BE%D1%80%D0%BA%D0%B0 simplicity of the sample] by individual features. Histograms of features and others [http://www.machinelearning.ru/wiki/index.php?title=%D0%9F%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D0%BA%D0%B0_%D1%81%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85_%D0%B3%D0%B8%D0%BF%D0%BE%D1%82%D0%B5%D0%B7 statistical tests statistical tests]. #Analysis [http://www.machinelearning.ru/wiki/index.php?title=%D0%90%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7_%D0%BC%D1%83%D0%BB%D1%8C%D1%82%D0%B8%D0%BA%D0%BE%D0%BB%D0%BB%D0%B8%D0%BD%D0%B5%D0%B0%D1%80%D0%BD%D0%BE%D1%81%D1%82%D0%B8_%28%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%29 multi-correlation] of features, in particular analysis [http://www.machinelearning.ru/wiki/index.php?title=%D0%9A%D0%BE%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0 covariance matrices]. Calculation [http://www.machinelearning.ru/wiki/index.php?title=%D0%9A%D0%BE%D1%8D%D1%84%D1%84%D0%B8%D1%86%D0%B8%D0%B5%D0%BD%D1%82_%D0%B4%D0%B5%D1%82%D0%B5%D1%80%D0%BC%D0%B8%D0%BD%D0%B0%D1%86%D0%B8%D0%B8 determination coefficient <math>R^2</math>], [http://www.machinelearning.ru/wiki/index.php?title=VIF variance inflation factor VIF], visualization of results [http://www.machinelearning.ru/wiki/index.php?title=%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%91%D0%B5%D0%BB%D1%81%D0%BB%D0%B8 Belsley method], in particular, when [http://www.machinelearning.ru/wiki/index.php?title=%D0%98%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%D0%B0_%D0%91% D0%B5%D0%BB%D1%81%D0%BB%D0%B8_%D0%B4%D0%BB%D1%8F_%D0%BF%D1%80%D0%BE%D1%80%D0%B5%D0%B6%D0 %B8%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F_%D0%BF%D1%80%D0%B8%D0%B7%D0%BD%D0%B0%D0%BA%D0%BE%D0%B2 change in the composition of features], [https://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7 factor analysis].
 +
#Test [http://strijov.com/papers/AduenkoObjectSelection_RV.pdf the presence of outliers] in the sample. Visualization of the change in the error function when excluding outliers.
 +
#Test [http://www.machinelearning.ru/wiki/images/0/03/Neychev2016BSThesis.pdf the presence of multimodels]: reducing the error when, for example, using the boosting strategy.
 +
# Estimation [http://strijov.com/papers/MotrenkoStrijovWeber2012SampleSize_ICACM.pdf of the required sample power]: on the abscissa axis—the number of objects, on the ordinate axis—the training error and its standard deviation.
 +
# Estimation of the required number of features: on the abscissa axis—sequentially added features; features are added, for example, in decreasing order of the rate of change of the error—the so-called acceleration and deceleration of the error.
 +
 
 +
=== Analysis of the variance of parameters and the error function ===
 +
# Analysis of the standard deviation of the error function (internal criterion) and external criteria (in particular, visualization of ROC—training and control on each of the splits).
 +
# Analysis of the change in the error function at optimization iterations (the abscissa axis is iterations, the ordinate axis is the error function during training, control, and its standard deviation).
 +
# Analysis of changes in the parameters and hyperparameters of the model (the abscissa axis is iterations, the ordinate axis is the set of parameters, noodles, and their standard deviations or hyperparameters).
 +
# Analysis of changes in parameters and error functions when changing structural parameters or regularizers (they are on the abscissa axis, on the ordinate axis—don't forget about the standard deviation obtained by sliding control).
 +
# Complexity of the error function optimization algorithm depending on the sample size
 +
## theoretical,
 +
## empirical,
 +
## approximation of the empirical function to the theoretical one (the abscissa axis is the sample size, the number of features, and the number of clusters).
 +
# Analysis of model properties using external criteria, taking into account
 +
 
 +
==Resources==
 +
* [https://www.youtube.com/watch?v=MKl_e0r32_k Video for week 7].
 +
* [http://www.machinelearning.ru/wiki/images/6/69/M1p_lect7.pdf Slides for week 7], [http://www.machinelearning.ru/wiki/images/d/da/M1p2022lect7_experiment.pdf slides 2022],
 +
* [http://www.machinelearning.ru/wiki/images/8/84/M1p2022lect7_experiment.pdf exams of computational experiment 2022].
 +
# Quality criteria for linear models [http://strijov.com/papers/Katrutsa2014TestGenerationEn.pdf once], [http://strijov.com/papers/Katrutsa2016QPFeatureSelection.pdf two].
 +
# Collection of graphs, [https://sourceforge.net/p/mvr/code/HEAD/tree/lectures/MachineLearningResearch/ComputationalExperiment/fig_compilation_slides.pdf?format=raw assorted].
 +
# 11 Important Model Evaluation Techniques Everyone Should Know [https://www.datasciencecentral.com/profiles/blogs/7-important-model-evaluation-error-metrics-everyone-should-know, datacentral].
 +
# How Bayesian Inference Works, [https://www.datasciencecentral.com/profiles/blogs/how-bayesian-inference-works datacentral].
 +
# Tasks that are easy to do error analysis on: [http://www.machinelearning.ru/wiki/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F_%28%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%29 linear regression] and [http://www.machinelearning.ru/wiki/index.php?title=%D0%9B%D0%BE%D0%B3%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F_%28%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%29 logistic regression].
 +
-->
 +
 
 +
==Homework==
 +
Write the outline of the '''E'''rror analysis: 
 +
# include a plan for the Computational experiment in the section
 +
# draft of a graph with error analysis (e.g., learning curve of how accuracy depends on complexity, or learning curve with the variance of the error function)
 +
# model comparison table (baseline or partial completion is fine).
  
 
Формальный результат:  
 
Формальный результат:  
Line 5: Line 65:
 
# таблица сравнения моделей (пусть даже не до конц заполненная)
 
# таблица сравнения моделей (пусть даже не до конц заполненная)
  
== E: Error analysis ==  
+
== E: Error analysis ==
 +
Запустить базовый эксперимент, проанализировать его результаты.
 +
=== Цель анализа ===
 +
Анализ ошибки в вычислительных экспериментах&nbsp;— это анализ изменения значений функции ошибки при изменении состава выборки или при других изменениях условий обучения или эксплуатации модели.
 +
 
 +
Требуется нарисовать зависимость функции потерь или критерия качества от влияющих на эту функцию факторов. Например, от сложности модели, от шага итерации оптимизации, от дисперсии параметров.
 +
Построить таблицу сравнения различных моделей на нескольких выборках согласно набору критериев качества&nbsp;— таблицу модели-выборки-критерии.
 +
 
 +
=== Начальные требования для анализа ===
 +
# Поставлена задача оптимизации параметров.
 +
# Задана стратегия разбиения скользящего контроля.
 +
# Задан набор внешних (эксплуатационных) критериев качества модели.
 +
# Для набора разбиений получен
 +
#* набор значений векторов оптимальных параметров,
 +
#* набор значений функции ошибки на обучении и на контроле.
 +
# Получен набор значений внешних критериев на обучении и контроле.
 +
 
 +
===Анализ состава выборки===
 +
#Анализ [http://www.machinelearning.ru/wiki/index.php?title=%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%B0%D1%8F_%D0%B2%D1%8B%D0%B1%D0%BE%D1%80%D0%BA%D0%B0 простоты выборки] по отдельным признакам. Гистограммы признаков и другие [http://www.machinelearning.ru/wiki/index.php?title=%D0%9F%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D0%BA%D0%B0_%D1%81%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85_%D0%B3%D0%B8%D0%BF%D0%BE%D1%82%D0%B5%D0%B7 статистические тесты статистические тесты].
 +
#Анализ [http://www.machinelearning.ru/wiki/index.php?title=%D0%90%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7_%D0%BC%D1%83%D0%BB%D1%8C%D1%82%D0%B8%D0%BA%D0%BE%D0%BB%D0%BB%D0%B8%D0%BD%D0%B5%D0%B0%D1%80%D0%BD%D0%BE%D1%81%D1%82%D0%B8_%28%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%29 мульти-коррелированности] признаков, в частности анализ [http://www.machinelearning.ru/wiki/index.php?title=%D0%9A%D0%BE%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0 ковариационных матриц]. Вычисление [http://www.machinelearning.ru/wiki/index.php?title=%D0%9A%D0%BE%D1%8D%D1%84%D1%84%D0%B8%D1%86%D0%B8%D0%B5%D0%BD%D1%82_%D0%B4%D0%B5%D1%82%D0%B5%D1%80%D0%BC%D0%B8%D0%BD%D0%B0%D1%86%D0%B8%D0%B8 коэффициента детерминации <math>R^2</math>], [http://www.machinelearning.ru/wiki/index.php?title=VIF фактора инфляции дисперсии VIF], визуализация результатов [http://www.machinelearning.ru/wiki/index.php?title=%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%91%D0%B5%D0%BB%D1%81%D0%BB%D0%B8 метода Белсли], в частности, при [http://www.machinelearning.ru/wiki/index.php?title=%D0%98%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%D0%B0_%D0%91%D0%B5%D0%BB%D1%81%D0%BB%D0%B8_%D0%B4%D0%BB%D1%8F_%D0%BF%D1%80%D0%BE%D1%80%D0%B5%D0%B6%D0%B8%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F_%D0%BF%D1%80%D0%B8%D0%B7%D0%BD%D0%B0%D0%BA%D0%BE%D0%B2 изменении состава признаков], [https://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7 факторного анализа].
 +
#Тест [http://strijov.com/papers/AduenkoObjectSelection_RV.pdf наличия выбросов] в выборке. Визуализация изменения функции ошибки при исключении выбросов.
 +
#Тест [http://www.machinelearning.ru/wiki/images/0/03/Neychev2016BSThesis.pdf наличия мультимоделей]:  снижение ошибки при, например, использовании стратегии бустинга.
 +
# Оценка [http://strijov.com/papers/MotrenkoStrijovWeber2012SampleSize_ICACM.pdf необходимой мощности выборки]: по оси абсцисс&nbsp;— число объектов, по оси ординат&nbsp;— ошибка на обучении и ее стандартное отклонение.
 +
# Оценка необходимого числа признаков: по оси абсцисс&nbsp;— последовательно добавляемые признаки; признаки добавляются, например, по убыванию скорости изменения ошибки&nbsp;— т.&nbsp;н. ускорение и торможение ошибки.
 +
 
 +
=== Анализ дисперсии параметров и функции ошибки ===
 +
# Анализ стандартного отклонения функции ошибки (внутреннего критерия) и внешних критериев (в частности, визуализация ROC — обучение и контроль на каждом из разбиений).
 +
# Анализ изменения функции ошибки на итерациях оптимизации (ось абсцисс&nbsp;— итерации, ось ординат функция ошибки на обучении, контроле и ее стандартное отклонение).
 +
# Анализ изменения параметров и гиперпараметров модели (по оси абсцисс&nbsp;— итерации, по оси ординат&nbsp;— набор параметров, лапша и их стандартные отклонения или гипер-параметры).
 +
# Анализ изменения параметров и функций ошибки при изменении структурных параметров или регуляризаторов (они по оси абсцисс, по оси ординат&nbsp;— не забываем о стандартном отклонении, получаемом скользящим контролем).
 +
# Сложность алгоритма оптимизации функции ошибки в зависимости от объема выборки
 +
## теоретическая,
 +
## эмпирическая,
 +
## аппроксимация эмпирической функции теоретической (по оси абсцисс&nbsp;— объем выборки, число признаков, число кластеров).
 +
# Анализ свойств модели с помощью внешних критериев, учет возможных ограничений на параметры и структуру модели построение парето-оптимального фронта множества моделей, из которых производится выбор.
 +
 
 +
===Базовый вариант анализа===
 +
Обоснование модели, анализ ошибки. Отвечаем на вопрос почему мы используем именно такую прогностическую модель.
 +
# Зависимость значения ошибки и его [https://ru.wikipedia.org/wiki/%D0%A1%D1%80%D0%B5%D0%B4%D0%BD%D0%B5%D0%BA%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BE%D1%82%D0%BA%D0%BB%D0%BE%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5 стандартного отклонения] от сложности (числа признаков) на обучении и контроле.
 +
# Зависимость значения ошибки и его стандартного отклонения от объема выборки на обучении и контроле.
 +
# Комбинация первых двух вариантов.
 +
# Зависимость значения ошибки и его стандартного отклонения от номера шага в итерационной процедуре.
 +
 
 +
=== Кривая обучения ===
 +
Исследуем график зависимости ошибки и ее дисперсии от номера итерации или эпохи алгоритма оптимизации параметров и гипер-параметров модели.
 +
 
 +
# На ваш выбор взять выборку и тип нейронной сети. Согласовать объем выборки и сложность нейронной сети.
 +
# В процедуру оптимизации нейронной сети вставить код, получающий ошибку на тестовой и контрольной выборках или воспользоваться встроенными процедурами.
 +
# Для разных объемов выборки построить графики кривой обучения, показывающие различные скорости обучения.
 +
# Наложить на выборку шум. Например, перемешать независимые переменные или добавить случайный шум в зависимые, на ваш выбор. Построить несколько графиков кривой обучения в условиях наложенного шума с разной дисперсией.
 +
 
 +
=== Анализ структуры модели ===
 +
Анализ пространства параметров,  гиперпараметров, структурных параметров, метапараметров
  
 +
# Обсудить, что является структурным параметром, согласно которому модель выбирается из множества моделей, примеры:
 +
#* число признаков обобщенно-линейные модели,
 +
#* число слоев нейросети, число нейронов или параметров каждого слоя,
 +
#* число ближайших соседей,
 +
#* другие параметры.
 +
# Обсудить способ выбора модели:
 +
#* с помощью алгоритмического задания структуры,
 +
#* посредством включения структурных параметров в модель,
 +
#* посредством включения структурных параметров в функцию ошибки,
 +
#* наложением ограничений на функцию ошибки,
 +
#* введением механизма релаксации элементов функции ошибки,
 +
# Обсудить алгоритм выбора модели, оптимизации структурных параметров, примеры:
 +
#* перебор из списка, заданного вручную,
 +
#* полный перебор,
 +
#* генетические алгоритмы,
 +
#* оптимизация с релаксацией,
 +
#* алгоритмы выбора признаков,
 +
#* алгоритмы прореживания,
 +
#* другие специальные алгоритмы.
 +
# Запустить алгоритмы оптимизации
 +
#* параметров,
 +
#* гиперпараметров (если имеются),
 +
#* структурных параметров.
 +
# Назначить метапараметры или расписание их изменения.
 +
# Построить сравнительную таблицу моделей (на одной выборке или нескольких) согласно критериям качества.
  
 
==Resources==
 
==Resources==
* [Video for week 7].
+
* [https://www.youtube.com/watch?v=MKl_e0r32_k Video for week 7].
* [Slides for week 7].
+
* [http://www.machinelearning.ru/wiki/images/6/69/M1p_lect7.pdf Slides for week 7], [http://www.machinelearning.ru/wiki/images/d/da/M1p2022lect7_experiment.pdf slides 2022],
 +
* [http://www.machinelearning.ru/wiki/images/8/84/M1p2022lect7_experiment.pdf examles of computational experiment 2022].
 +
# Критерии качества линейных моделей [http://strijov.com/papers/Katrutsa2014TestGenerationEn.pdf раз], [http://strijov.com/papers/Katrutsa2016QPFeatureSelection.pdf два].
 +
# Коллекция графиков, [https://sourceforge.net/p/mvr/code/HEAD/tree/lectures/MachineLearningResearch/ComputationalExperiment/fig_compilation_slides.pdf?format=raw ассорти].
 +
# 11 Important Model Evaluation Techniques Everyone  Should Know [https://www.datasciencecentral.com/profiles/blogs/7-important-model-evaluation-error-metrics-everyone-should-know, datacentral].
 +
# How Bayesian Inference Works, [https://www.datasciencecentral.com/profiles/blogs/how-bayesian-inference-works datacentral].
 +
# Задачи, на которых легко делать анализ ошибки: [http://www.machinelearning.ru/wiki/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F_%28%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%29 линейная регрессия] и [http://www.machinelearning.ru/wiki/index.php?title=%D0%9B%D0%BE%D0%B3%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F_%28%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%29 логистическая регрессия].

Latest revision as of 13:22, 3 April 2025

Make the error and quality analysis. Finalize the computational experiment.


Homework

Write the outline of the Error analysis:

  1. include a plan for the Computational experiment in the section
  2. draft of a graph with error analysis (e.g., learning curve of how accuracy depends on complexity, or learning curve with the variance of the error function)
  3. model comparison table (baseline or partial completion is fine).

Формальный результат:

  1. график с анализом ошибки (например, кривая обучения или зависимость точности от сложности и дисперсия функции ошибки)
  2. таблица сравнения моделей (пусть даже не до конц заполненная)

E: Error analysis

Запустить базовый эксперимент, проанализировать его результаты.

Цель анализа

Анализ ошибки в вычислительных экспериментах — это анализ изменения значений функции ошибки при изменении состава выборки или при других изменениях условий обучения или эксплуатации модели.

Требуется нарисовать зависимость функции потерь или критерия качества от влияющих на эту функцию факторов. Например, от сложности модели, от шага итерации оптимизации, от дисперсии параметров. Построить таблицу сравнения различных моделей на нескольких выборках согласно набору критериев качества — таблицу модели-выборки-критерии.

Начальные требования для анализа

  1. Поставлена задача оптимизации параметров.
  2. Задана стратегия разбиения скользящего контроля.
  3. Задан набор внешних (эксплуатационных) критериев качества модели.
  4. Для набора разбиений получен
    • набор значений векторов оптимальных параметров,
    • набор значений функции ошибки на обучении и на контроле.
  5. Получен набор значений внешних критериев на обучении и контроле.

Анализ состава выборки

  1. Анализ простоты выборки по отдельным признакам. Гистограммы признаков и другие статистические тесты статистические тесты.
  2. Анализ мульти-коррелированности признаков, в частности анализ ковариационных матриц. Вычисление коэффициента детерминации \(R^2\), фактора инфляции дисперсии VIF, визуализация результатов метода Белсли, в частности, при изменении состава признаков, факторного анализа.
  3. Тест наличия выбросов в выборке. Визуализация изменения функции ошибки при исключении выбросов.
  4. Тест наличия мультимоделей: снижение ошибки при, например, использовании стратегии бустинга.
  5. Оценка необходимой мощности выборки: по оси абсцисс — число объектов, по оси ординат — ошибка на обучении и ее стандартное отклонение.
  6. Оценка необходимого числа признаков: по оси абсцисс — последовательно добавляемые признаки; признаки добавляются, например, по убыванию скорости изменения ошибки — т. н. ускорение и торможение ошибки.

Анализ дисперсии параметров и функции ошибки

  1. Анализ стандартного отклонения функции ошибки (внутреннего критерия) и внешних критериев (в частности, визуализация ROC — обучение и контроль на каждом из разбиений).
  2. Анализ изменения функции ошибки на итерациях оптимизации (ось абсцисс — итерации, ось ординат функция ошибки на обучении, контроле и ее стандартное отклонение).
  3. Анализ изменения параметров и гиперпараметров модели (по оси абсцисс — итерации, по оси ординат — набор параметров, лапша и их стандартные отклонения или гипер-параметры).
  4. Анализ изменения параметров и функций ошибки при изменении структурных параметров или регуляризаторов (они по оси абсцисс, по оси ординат — не забываем о стандартном отклонении, получаемом скользящим контролем).
  5. Сложность алгоритма оптимизации функции ошибки в зависимости от объема выборки
    1. теоретическая,
    2. эмпирическая,
    3. аппроксимация эмпирической функции теоретической (по оси абсцисс — объем выборки, число признаков, число кластеров).
  6. Анализ свойств модели с помощью внешних критериев, учет возможных ограничений на параметры и структуру модели построение парето-оптимального фронта множества моделей, из которых производится выбор.

Базовый вариант анализа

Обоснование модели, анализ ошибки. Отвечаем на вопрос почему мы используем именно такую прогностическую модель.

  1. Зависимость значения ошибки и его стандартного отклонения от сложности (числа признаков) на обучении и контроле.
  2. Зависимость значения ошибки и его стандартного отклонения от объема выборки на обучении и контроле.
  3. Комбинация первых двух вариантов.
  4. Зависимость значения ошибки и его стандартного отклонения от номера шага в итерационной процедуре.

Кривая обучения

Исследуем график зависимости ошибки и ее дисперсии от номера итерации или эпохи алгоритма оптимизации параметров и гипер-параметров модели.

  1. На ваш выбор взять выборку и тип нейронной сети. Согласовать объем выборки и сложность нейронной сети.
  2. В процедуру оптимизации нейронной сети вставить код, получающий ошибку на тестовой и контрольной выборках или воспользоваться встроенными процедурами.
  3. Для разных объемов выборки построить графики кривой обучения, показывающие различные скорости обучения.
  4. Наложить на выборку шум. Например, перемешать независимые переменные или добавить случайный шум в зависимые, на ваш выбор. Построить несколько графиков кривой обучения в условиях наложенного шума с разной дисперсией.

Анализ структуры модели

Анализ пространства параметров, гиперпараметров, структурных параметров, метапараметров

  1. Обсудить, что является структурным параметром, согласно которому модель выбирается из множества моделей, примеры:
    • число признаков обобщенно-линейные модели,
    • число слоев нейросети, число нейронов или параметров каждого слоя,
    • число ближайших соседей,
    • другие параметры.
  2. Обсудить способ выбора модели:
    • с помощью алгоритмического задания структуры,
    • посредством включения структурных параметров в модель,
    • посредством включения структурных параметров в функцию ошибки,
    • наложением ограничений на функцию ошибки,
    • введением механизма релаксации элементов функции ошибки,
  3. Обсудить алгоритм выбора модели, оптимизации структурных параметров, примеры:
    • перебор из списка, заданного вручную,
    • полный перебор,
    • генетические алгоритмы,
    • оптимизация с релаксацией,
    • алгоритмы выбора признаков,
    • алгоритмы прореживания,
    • другие специальные алгоритмы.
  4. Запустить алгоритмы оптимизации
    • параметров,
    • гиперпараметров (если имеются),
    • структурных параметров.
  5. Назначить метапараметры или расписание их изменения.
  6. Построить сравнительную таблицу моделей (на одной выборке или нескольких) согласно критериям качества.

Resources

  1. Критерии качества линейных моделей раз, два.
  2. Коллекция графиков, ассорти.
  3. 11 Important Model Evaluation Techniques Everyone Should Know datacentral.
  4. How Bayesian Inference Works, datacentral.
  5. Задачи, на которых легко делать анализ ошибки: линейная регрессия и логистическая регрессия.