Difference between revisions of "Books"

From Research management course
Jump to: navigation, search
Line 1: Line 1:
=Catch-up for machine learning=
+
=Machine learning for beginners=
==Linear algebra==
+
* [https://arxiv.org/pdf/1709.02840 A Brief Introduction to Machine Learning for Engineers by Osvaldo Simeone, 2017-2018]
 +
* [https://www.semanticscholar.org/paper/Understanding-Machine-Learning%3A-From-Theory-to-Shalev-Shwartz-Ben-David/ce615ae61d67db8537e981a0a08da7f0f2ff1cee Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz, Shai Ben-David, 2014]
 +
* [https://mml-book.github.io/book/mml-book.pdf Mathematics for Machine learning by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong, 2020]
 +
* [https://klassfeldtheorie.files.wordpress.com/2018/10/mathematische-methoden-310117.pdf Mathematics for Physicists: Introductory Concepts and Methods by Alexander Altland & Jan von Delf, 2018]
 +
* [http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf Bishop C.P. Pattern recognition and machine learning, Berlin: Springer, 2008.]
 +
* [http://www.inference.org.uk/itprnn/book.pdf MackKay D. Information Theory, Pattern Recognition and Neural Networks, Inference.org.uk, 2009.]
 +
 
 +
=Linear algebra=
 
*[https://drive.google.com/file/d/16SL9bQYar2ylDzHKNapBIDXCYUZEnRIh/view?fbclid=IwAR3fiuQgDJ0PRxv8o6UslbGx2ICdKxO2Li32FtwPJ_GbjRCXKhxa-BPZw2A Linear algebra by Jörg Liesen, Volker Mehrmann, 2015]
 
*[https://drive.google.com/file/d/16SL9bQYar2ylDzHKNapBIDXCYUZEnRIh/view?fbclid=IwAR3fiuQgDJ0PRxv8o6UslbGx2ICdKxO2Li32FtwPJ_GbjRCXKhxa-BPZw2A Linear algebra by Jörg Liesen, Volker Mehrmann, 2015]
 
*[http://joshua.smcvt.edu/linearalgebra Linear algebra by Jim Hefferon, 2017]
 
*[http://joshua.smcvt.edu/linearalgebra Linear algebra by Jim Hefferon, 2017]
 
*[https://web.stanford.edu/~boyd/vmls/?fbclid=IwAR08VCHfJ1hVAvuVBW6G59CZZ9EWzAlm0yKnID82DP9G2YbmugzsYIQQ4W0 Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares by Stephen Boyd and Lieven Vandenberghe, 2018]
 
*[https://web.stanford.edu/~boyd/vmls/?fbclid=IwAR08VCHfJ1hVAvuVBW6G59CZZ9EWzAlm0yKnID82DP9G2YbmugzsYIQQ4W0 Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares by Stephen Boyd and Lieven Vandenberghe, 2018]
 
=Machine learning for beginners=
 
  
 
=Basic statistics=
 
=Basic statistics=
  
=Statistics and inference=
+
=Bayesian statistics and inference=
 
 
=Bayesian inference=
 
  
 
=Functional data analysis=
 
=Functional data analysis=
 
* [https://www.unige.ch/~hairer/poly-sde-mani.pdf Solving Differential Equations on Manifolds by Ernst Hairer, 2011. University of Geneva]
 
* [https://www.unige.ch/~hairer/poly-sde-mani.pdf Solving Differential Equations on Manifolds by Ernst Hairer, 2011. University of Geneva]
 
*
 
*
 +
 +
=Programming=
 +
* [https://unglueit-files.s3.amazonaws.com/ebf/617027d14a3046998f54b31503ab7bca.pdf Python notes for professionals by GoalKicker.com Free Programming Books, 2020]
 +
 +
=Russian edition=
 +
* [http://www.1variant.ru/content/uchebniki/matematika/650.pdf Лагутин М.Б. Наглядная математическая статистика, М.: Бином, 2009.] См. также [http://files.lbz.ru/pdf/cC2125-4-ch.pdf вырезку].

Revision as of 00:36, 30 December 2020