Difference between revisions of "Fundamental theorems"

From Research management course
Jump to: navigation, search
Line 14: Line 14:
 
How to find, state and prove theorems in your work?
 
How to find, state and prove theorems in your work?
  
==Мотивация и план курса==
+
==Motivation and syllabus==
 +
The goal of the course is to boost the quality of students bachelor and master thesis works; to make results of student scientific research well-founded. The course studies techniques and practice of theorem formulations and proofs in the field of machine learning.
 +
<!-- Цель курса — повысить качество студенческих научных работ на кафедре, сделать статьи и дипломные работы более обоснованными, изучить технику и практику формулировок доказательства теорем в области машинного обучения. Результат курса - теоретически обоснованные сообщения дипломных работ бакалавра.-->
  
Цель курса — повысить качество студенческих научных работ на кафедре, сделать статьи и дипломные работы более обоснованными, изучить технику и практику формулировок доказательства теорем в области машинного обучения. Результат курса - теоретически обоснованные сообщения дипломных работ бакалавра.
+
* Educational mimic progression
 +
** Definition <math>\to</math> (Axiom set)  <math>\to</math> Theorem  <math>\to</math> Proof  <math>\to</math> Corollaries <math>\to</math> Examples <math>\to</math> Impact to applications
 +
* Scientific discovery progression
 +
** Application problems <math>\to</math> Problem generalisations  <math>\to</math>  Useful algebraic platform <math>\to</math>  Definitions <math>\to</math> Axiom set
 +
 +
===Each lesson contains===
 +
# A lecturer's talk on one of fundamental theorems (<math>40' = 30' + 10'</math> discussion)
 +
# Two students' talks  (each <math>20' = 15' + 5'</math> discussion)
  
[http://bit.ly/MLTh_21  Короткая ссылка bit.ly/MLTh_21]
+
===Each student delivers two talks===
===Каждое занятие курса===
+
# On a theorem, which is formulated in a paper from the list of student thesis work's references
# Доклад лектора — одна из фундаментальных теорем (40' = 30' + 10' обсуждение)
+
# On a theorem, which is formulated and proved by the student
# Два студенческих доклада (20'=15'+5' обсуждение)
 
  
===Каждый студент делает два доклада===
+
===It is welcome to===
# С теоремой взятой из литературы, по которой выполняется дипломная работа
+
* Make variants of our own formulations and proofs
# С собственной теоремой, обосновывающей решение, предлагаемое в дипломное работе
+
* Re-formulate significant messages of researchers and formulate these messages as theorems
  
===Приветствуются!===
+
===Plan of a talk===
* Варианты собственных формулировок и доказательств
+
# Introduction: the main message briefly
* Значимые высказывания ведущих исследователей, оформленные в виде теорем (пример изложения Кристофера Бишопа)
+
# If necessary (it could be introduced during the talk)
 +
## Axiom sets
 +
## Definitions
 +
## Algebraic structures
 +
## Notations
 +
# Theorem formulation and exact proof
 +
## The author's variant of the proof could be ameliorated
 +
# Corollaries
 +
# Theorem significance and applications
  
===План изложения материала===
+
===Typography===
# Введение: основное сообщение теоремы в понятном (не обязательно строгом) изложении
+
* As one (or two) text page [https://drive.google.com/file/d/17AcostCAVSKfgK52MAelsSy_dC-sxDR4/view?usp=sharing example], [https://www.overleaf.com/read/wsmczggkzpgj template to download]
# Вводная часть: определение терминов и сведения, необходимые для изложения (обозначения можно использовать авторские или [ссылка на обозначения Б.А.С.])
+
* Please
# Формулировка и доказательство теоремы в '''строгом''' изложении (но можно отходить от авторского варианта, если это нужно для ясности)
+
** set the font size <math>\geq 14</math>pt
# Значимость теоремы: ссылки или обзор методов и приложений, иллюстрирующих теорему
+
** include plots, diagrams, freehand drawings
  
===Оформление===
+
===The organization===
* В виде страницы текста, [https://drive.google.com/file/d/17AcostCAVSKfgK52MAelsSy_dC-sxDR4/view?usp=sharing пример], [https://www.overleaf.com/read/wsmczggkzpgj шаблон]
+
* GitHub project to upload your text [https://github.com/Intelligent-Systems-Phystech/FundamentalTheoremsML  Intelligent-Systems-Phystech/FundamentalTheoremsML]
* Слайды приветствуются, но необязательны
+
** to the group folder upload the pdf, tex, fig files named as
* Очень приветствуются поясняющие рисунки, диаграммы, графики (можно от руки)
 
 
 
===Материалы курса===
 
* Проект на GitHub для загрузки докладов [https://github.com/Intelligent-Systems-Phystech/FundamentalTheoremsML  Intelligent-Systems-Phystech/FundamentalTheoremsML]
 
** В папку группы 674 загрузить pdf, tex, fig с именем файла
 
 
** Surname2021Literature, Surname2021Research,
 
** Surname2021Literature, Surname2021Research,
* Канал Youtube [https://www.youtube.com/channel/UC90B3Y_FbBRrRQk5TCiKgSA Machine Learning]
+
* See the Youtube channel [https://www.youtube.com/channel/UC90B3Y_FbBRrRQk5TCiKgSA Machine Learning]
* Ссылка на сессию Zoom m1p.org/go_zoom
+
* Spring semester, Wednesdays 14:30 at Zoom m1p.org/go_zoom
  
===Оценивание===
+
===Scoring===
* Доклад и материалы к нему 0-4 балла (по результатам сравнения работ)
+
* Talks and text 0-4 points, according to comparison
* Не по расписанию делим на два
+
* Out-of-schedule drops a half
* Экзамен 2 балла
+
* The exam 2 points
  
 
==Расписание докладов==
 
==Расписание докладов==

Revision as of 21:45, 5 April 2021

Fundamental theorems of Machine learning

Фундаментальные теоремы машинного обучения 1. Причины: Теорема - краткое сообщение о наиболее важных результатах области. 2. Теорема делает область математической в силу общности и строгости. 3. теоремы лежат в основе математики, они также играют центральную роль в её эстетике 4. Основная теорема линейной алгебры - не нужна (но нужна в контексте СВД) https://www.engineering.iastate.edu/~julied/classes/CE570/Notes/strangpaper.pdf 5. Основная теорема статистики - нужна. 6. Должна быть показана связь между различными областями машинного обучения 7. Вероятность, обоснованность, порождение и выбор, корректность по Адамару, снижение размерности, сходимость алгоритмов

How direct narration transform to fast narration?

How to find, state and prove theorems in your work?

Motivation and syllabus

The goal of the course is to boost the quality of students bachelor and master thesis works; to make results of student scientific research well-founded. The course studies techniques and practice of theorem formulations and proofs in the field of machine learning.

  • Educational mimic progression
    • Definition \(\to\) (Axiom set) \(\to\) Theorem \(\to\) Proof \(\to\) Corollaries \(\to\) Examples \(\to\) Impact to applications
  • Scientific discovery progression
    • Application problems \(\to\) Problem generalisations \(\to\) Useful algebraic platform \(\to\) Definitions \(\to\) Axiom set

Each lesson contains

  1. A lecturer's talk on one of fundamental theorems (\(40' = 30' + 10'\) discussion)
  2. Two students' talks (each \(20' = 15' + 5'\) discussion)

Each student delivers two talks

  1. On a theorem, which is formulated in a paper from the list of student thesis work's references
  2. On a theorem, which is formulated and proved by the student

It is welcome to

  • Make variants of our own formulations and proofs
  • Re-formulate significant messages of researchers and formulate these messages as theorems

Plan of a talk

  1. Introduction: the main message briefly
  2. If necessary (it could be introduced during the talk)
    1. Axiom sets
    2. Definitions
    3. Algebraic structures
    4. Notations
  3. Theorem formulation and exact proof
    1. The author's variant of the proof could be ameliorated
  4. Corollaries
  5. Theorem significance and applications

Typography

  • As one (or two) text page example, template to download
  • Please
    • set the font size \(\geq 14\)pt
    • include plots, diagrams, freehand drawings

The organization

Scoring

  • Talks and text 0-4 points, according to comparison
  • Out-of-schedule drops a half
  • The exam 2 points

Расписание докладов

Докладчик Литература Диплом
Бишук Антон 17.2 link 31.3 link
Вайсер Кирилл 
 17.2 link 31.3 link
Гребенькова Ольга 
 24.2 link 7.4 link
Гунаев Руслан 24.2 link 7.4 link

Жолобов Владимир 
 3.3 link 14.4 link
Исламов Рустем 3.3 link 14.4 link
Панкратов Виктор 
 10.3 link 21.4 link
Савельев Николай 10.3 link 21.4 link
Филатов Андрей 10.3 link 21.4 link
Филиппова Анастасия 
 17.3 link 28.4 link
Харь Александра 
 17.3 link 28.4 link
Христолюбов Максим 24.3 link 5.5 link
Шокоров Вячеслав 
 24.3 link 5.5 link

Lecture topics

  1. Singular values decomposition and spectral theorem W
  2. Gauss–Markov-(Aitken) theorem W
  3. Principal component analysis W
  4. Karhunen–Loève theorem W
  5. Kolmogorov–Arnold representation theorem W
  6. Universal approximation theorem by Cybenko W
  7. Deep neural network theorem
  8. No free lunch theorem by Wolpert W
  9. RKHS by Aronszajn and Mercer's theorem W
  10. Representer theorem by Schölkopf, Herbrich, and Smola W
  11. Convolution theorem (FT, convolution, correlation with CNN examples) W
  12. Fourier inversion theorem W
  13. Wiener–Khinchin theorem about autocorrelation and spectral decomposition W
  14. Parseval's theorem (and uniform, non-uniform convergence) W
  15. Probably approximately correct learning with the theorem about compression means learnability
  16. Bernstein–von Mises theorem W
  17. Holland's schema theorem W
  18. Variational approximation
  19. Convergence of random variables and Kloek's theorem W
  20. Exponential family of distributions and Nelder's theorem
  21. Multi-armed bandit theorem
  22. Copulas and Sklar's theorem W

Theorem types

  • Существование и единственность (NN)
  • Универсальность
  • Сходимость[1]
    • Поточечно
    • Равномерно
    • По мере
    • Почти всюду
    • По распределению
    • По вероятности
    • По Чезаро, Борделю, Пуассона, Эйлеру
    • Абсолютная
    • Условная
    • В среднем L1, среднеквадратичном L2
    • Сильная, слабая
  • Оценки
    • Точечная
    • Не точечная
    • Состоятельная
    • Несмещенная
    • Эффективная
    • Omitted-variable bias
  • almost sure, almost everywhere

Talks

  1. Three works by Greg Yang arXiv:1910.12478, arXiv:2006.14548, arXiv:2009.10685 Youtube Rus
  2. Theorems on flows by Johann Brehmera and Kyle Cranmera arXiv:2003.13913v2

Расписание лекций

Дата Тема Лектор Ссылки
10 февраля Вводное занятие (и Основная теорема статистики) Стрижов, Потанин link
17 февраля Теорема сходимости перцептрона Ф.Розенблатта, Блока, Джозефа, Кестена Марк Потанин link
24 февраля Теоремы Колмогорова и Арнольда, теорема об универсальном аппроксиматоре Цыбенко, теорема о глубоких нейросетях Марк Потанин link
10 марта Берштейн - фон Мизес Андрей Грабовой link
17 марта Берштейн - фон Мизес (продолжение) Андрей Грабовой link
24 марта РАС обучаемость, теорема о том, что сжатие предполагает обучаемость Андрей Грабовой link
31 марта Сходимость про вероятности при выборе моделей Марк Потанин link
7 апреля Теорема о минимальной длине описания Олег Бахтеев link
14 апреля Теорема о свертке (Фурье, свертка, автокорреляция) с примерами сверточных сетей Филипп Никитин link
21 апреля Representer theorem, Schölkopf, Herbrich, and Smola Андрей Грабовой link
28 апреля Обратная теорема Фурье, теорема Парсеваля (равномерная и неравномерная сходимость) Филипп Никитин link
5 мая Вариационная аппроксимация, теорема о байесовском выборе моделей Олег Бахтеев link
12 мая Разбор и обсуждение письменных работ: теоремы их доказательства (входящие в диплом) Потанин, Стрижов
26 мая Экзамен: схемы доказательства различных теорем (тест на время, как в гос по физике, и обсуждение) Потанин, Адуенко, Бахтеев
Теорема о бесплатных обедах в машинном обучении, Волперт Радослав Нейчев
Теорема схем, Холланд Радослав Нейчев

References

  1. Mathematical statistics by A.A. Borovkov, 1998
  2. Learning Theory from First Principles by Francis Bach, 2021
  3. Айзерман М.А., Браверман Э.М., Розоноэр Л.И. Метод потенциальных функций в теории обучения машин, 1970 (глава про сходимость)

Proof techniques

  1. Proofs and Mathematical Reasoning by Agata Stefanowicz, 2014
  2. The nuts and bolts of proofs by Antonella Cupillari, 2013
  3. Theorems, Corollaries, Lemmas, and Methods of Proof by Richard J. Rossi, 1956
  4. Problem Books in Mathematics by P.R. Halmos (editor), 1990
  5. Les contre-exemples en mathématique par Bertrand Hauchecorne, 2007
  6. Kolmogorov and Mathematical Logic by Vladimir A. Uspensky // The Journal of Symbolic Logic, Vol. 57, No. 2 (Jun., 1992), 385-412.
  7. Что такое аксиоматический метод? В.А. Успенский, 2001
  8. Аксиоматический метод. Е.Е. Золин, 2015

Methodology

  1. Introduction to Metamathematics by Stephen Cole Kleene, 1950
  2. Science and Method by Henry Poincare, 1908
  3. A Summary of Scientific Method by Peter Kosso, 2011
  4. Being a Researcher: An Informatics Perspective by Carlo Ghezzi, 2020
  5. The definitive glossary of higher mathematical jargon by Math Vault, 2015
  6. The definitive guide to learning higher mathematics: 10 principles to mathematical transcendence by Math Vault, 2020
  7. List of mathematical jargon on Wikipedia
  8. Пикабу. Типичные методы доказательства, 2018 (если вы чувствуете, что несет не туда)