Difference between revisions of "Fundamental theorems"

From Research management course
Jump to: navigation, search
Line 1: Line 1:
Fundamental theorems of Machine learning
+
'''Fundamental theorems of Machine learning''' [https://mipt.ru/english/edu/bachelor/ BS-4] MIPT course
  
 
Фундаментальные теоремы машинного обучения
 
Фундаментальные теоремы машинного обучения

Revision as of 21:51, 5 April 2021

Fundamental theorems of Machine learning BS-4 MIPT course

Фундаментальные теоремы машинного обучения 1. Причины: Теорема - краткое сообщение о наиболее важных результатах области. 2. Теорема делает область математической в силу общности и строгости. 3. теоремы лежат в основе математики, они также играют центральную роль в её эстетике 4. Основная теорема линейной алгебры - не нужна (но нужна в контексте СВД) https://www.engineering.iastate.edu/~julied/classes/CE570/Notes/strangpaper.pdf 5. Основная теорема статистики - нужна. 6. Должна быть показана связь между различными областями машинного обучения 7. Вероятность, обоснованность, порождение и выбор, корректность по Адамару, снижение размерности, сходимость алгоритмов

How direct narration transform to fast narration?

How to find, state and prove theorems in your work?

Motivation and syllabus

The goal of the course is to boost the quality of students bachelor and master thesis works; to make results of student scientific research well-founded. The course studies techniques and practice of theorem formulations and proofs in the field of machine learning.

  • Educational mimic progression
    • Definition \(\to\) (Axiom set) \(\to\) Theorem \(\to\) Proof \(\to\) Corollaries \(\to\) Examples \(\to\) Impact to applications
  • Scientific discovery progression
    • Application problems \(\to\) Problem generalisations \(\to\) Useful algebraic platform \(\to\) Definitions \(\to\) Axiom set

Each lesson contains

  1. A lecturer's talk on one of fundamental theorems (\(40' = 30' + 10'\) discussion)
  2. Two students' talks (each \(20' = 15' + 5'\) discussion)

Each student delivers two talks

  1. On a theorem, which is formulated in a paper from the list of student thesis work's references
  2. On a theorem, which is formulated and proved by the student

It is welcome to

  • Make variants of our own formulations and proofs
  • Re-formulate significant messages of researchers and formulate these messages as theorems

Plan of a talk

  1. Introduction: the main message briefly
  2. If necessary (it could be introduced during the talk)
    1. Axiom sets
    2. Definitions
    3. Algebraic structures
    4. Notations
  3. Theorem formulation and exact proof
    1. The author's variant of the proof could be ameliorated
  4. Corollaries
  5. Theorem significance and applications

Typography

  • As one (or two) text page example, template to download
  • Please
    • set the font size \(\geq 14\)pt
    • include plots, diagrams, freehand drawings

The organization

Scoring

  • Talks and text 0-4 points, according to comparison
  • Out-of-schedule drops a half
  • The exam 2 points

Расписание докладов

Докладчик Литература Диплом
Бишук Антон 17.2 link 31.3 link
Вайсер Кирилл 
 17.2 link 31.3 link
Гребенькова Ольга 
 24.2 link 7.4 link
Гунаев Руслан 24.2 link 7.4 link

Жолобов Владимир 
 3.3 link 14.4 link
Исламов Рустем 3.3 link 14.4 link
Панкратов Виктор 
 10.3 link 21.4 link
Савельев Николай 10.3 link 21.4 link
Филатов Андрей 10.3 link 21.4 link
Филиппова Анастасия 
 17.3 link 28.4 link
Харь Александра 
 17.3 link 28.4 link
Христолюбов Максим 24.3 link 5.5 link
Шокоров Вячеслав 
 24.3 link 5.5 link

Lecture topics

  1. Singular values decomposition and spectral theorem W
  2. Gauss–Markov-(Aitken) theorem W
  3. Principal component analysis W
  4. Karhunen–Loève theorem W
  5. Kolmogorov–Arnold representation theorem W
  6. Universal approximation theorem by Cybenko W
  7. Deep neural network theorem
  8. No free lunch theorem by Wolpert W
  9. RKHS by Aronszajn and Mercer's theorem W
  10. Representer theorem by Schölkopf, Herbrich, and Smola W
  11. Convolution theorem (FT, convolution, correlation with CNN examples) W
  12. Fourier inversion theorem W
  13. Wiener–Khinchin theorem about autocorrelation and spectral decomposition W
  14. Parseval's theorem (and uniform, non-uniform convergence) W
  15. Probably approximately correct learning with the theorem about compression means learnability
  16. Bernstein–von Mises theorem W
  17. Holland's schema theorem W
  18. Variational approximation
  19. Convergence of random variables and Kloek's theorem W
  20. Exponential family of distributions and Nelder's theorem
  21. Multi-armed bandit theorem
  22. Copulas and Sklar's theorem W

Theorem types

  • Существование и единственность (NN)
  • Универсальность
  • Сходимость[1]
    • Поточечно
    • Равномерно
    • По мере
    • Почти всюду
    • По распределению
    • По вероятности
    • По Чезаро, Борделю, Пуассона, Эйлеру
    • Абсолютная
    • Условная
    • В среднем L1, среднеквадратичном L2
    • Сильная, слабая
  • Оценки
    • Точечная
    • Не точечная
    • Состоятельная
    • Несмещенная
    • Эффективная
    • Omitted-variable bias
  • almost sure, almost everywhere

Talks

  1. Three works by Greg Yang arXiv:1910.12478, arXiv:2006.14548, arXiv:2009.10685 Youtube Rus
  2. Theorems on flows by Johann Brehmera and Kyle Cranmera arXiv:2003.13913v2

Расписание лекций

Дата Тема Лектор Ссылки
10 февраля Вводное занятие (и Основная теорема статистики) Стрижов, Потанин link
17 февраля Теорема сходимости перцептрона Ф.Розенблатта, Блока, Джозефа, Кестена Марк Потанин link
24 февраля Теоремы Колмогорова и Арнольда, теорема об универсальном аппроксиматоре Цыбенко, теорема о глубоких нейросетях Марк Потанин link
10 марта Берштейн - фон Мизес Андрей Грабовой link
17 марта Берштейн - фон Мизес (продолжение) Андрей Грабовой link
24 марта РАС обучаемость, теорема о том, что сжатие предполагает обучаемость Андрей Грабовой link
31 марта Сходимость про вероятности при выборе моделей Марк Потанин link
7 апреля Теорема о минимальной длине описания Олег Бахтеев link
14 апреля Теорема о свертке (Фурье, свертка, автокорреляция) с примерами сверточных сетей Филипп Никитин link
21 апреля Representer theorem, Schölkopf, Herbrich, and Smola Андрей Грабовой link
28 апреля Обратная теорема Фурье, теорема Парсеваля (равномерная и неравномерная сходимость) Филипп Никитин link
5 мая Вариационная аппроксимация, теорема о байесовском выборе моделей Олег Бахтеев link
12 мая Разбор и обсуждение письменных работ: теоремы их доказательства (входящие в диплом) Потанин, Стрижов
26 мая Экзамен: схемы доказательства различных теорем (тест на время, как в гос по физике, и обсуждение) Потанин, Адуенко, Бахтеев
Теорема о бесплатных обедах в машинном обучении, Волперт Радослав Нейчев
Теорема схем, Холланд Радослав Нейчев

References

  1. Mathematical statistics by A.A. Borovkov, 1998
  2. Learning Theory from First Principles by Francis Bach, 2021
  3. Айзерман М.А., Браверман Э.М., Розоноэр Л.И. Метод потенциальных функций в теории обучения машин, 1970 (глава про сходимость)

Proof techniques

  1. Proofs and Mathematical Reasoning by Agata Stefanowicz, 2014
  2. The nuts and bolts of proofs by Antonella Cupillari, 2013
  3. Theorems, Corollaries, Lemmas, and Methods of Proof by Richard J. Rossi, 1956
  4. Problem Books in Mathematics by P.R. Halmos (editor), 1990
  5. Les contre-exemples en mathématique par Bertrand Hauchecorne, 2007
  6. Kolmogorov and Mathematical Logic by Vladimir A. Uspensky // The Journal of Symbolic Logic, Vol. 57, No. 2 (Jun., 1992), 385-412.
  7. Что такое аксиоматический метод? В.А. Успенский, 2001
  8. Аксиоматический метод. Е.Е. Золин, 2015

Methodology

  1. Introduction to Metamathematics by Stephen Cole Kleene, 1950
  2. Science and Method by Henry Poincare, 1908
  3. A Summary of Scientific Method by Peter Kosso, 2011
  4. Being a Researcher: An Informatics Perspective by Carlo Ghezzi, 2020
  5. The definitive glossary of higher mathematical jargon by Math Vault, 2015
  6. The definitive guide to learning higher mathematics: 10 principles to mathematical transcendence by Math Vault, 2020
  7. List of mathematical jargon on Wikipedia
  8. Пикабу. Типичные методы доказательства, 2018 (если вы чувствуете, что несет не туда)