Difference between revisions of "Week 1"

From Research management course
Jump to: navigation, search
m
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
{{#seo:
 
{{#seo:
|title=Course My first scientific article: Week 1
+
|title=Course My first scientific paper: Week 1
 
|titlemode=replace
 
|titlemode=replace
|keywords=My first scientific article
+
|keywords=My first scientific paper
|description=Course My first scientific article: The goal of the week is to express your project view, and set the toolbox.
+
|description=Course My first scientific paper: The goal of the week is to express your project view, and set the toolbox.
 
  }}
 
  }}
  
Line 40: Line 40:
 
#* Development for ML: [https://pytorch.org/ PyTorch]
 
#* Development for ML: [https://pytorch.org/ PyTorch]
 
#* Style formatting: [https://www.python.org/dev/peps/pep-0008/ Codestyle pep8]
 
#* Style formatting: [https://www.python.org/dev/peps/pep-0008/ Codestyle pep8]
# '''Add.''' As alternative install and try [http://www.machinelearning.ru/wiki/index.php?title=Matlab Matlab (MIPT provides free version)], (alternative [http://www.gnu.org/software/octave/ Octave]), [https://www.r-project.org/ R-project], [https://www.wolframcloud.com/ Wolfram Mathematica].
+
# '''Add.''' As alternative install and try [http://www.machinelearning.ru/wiki/index.php?title=Matlab Matlab (check of your university provides a free version)], (alternative [http://www.gnu.org/software/octave/ Octave]), [https://www.r-project.org/ R-project], [https://www.wolframcloud.com/ Wolfram Mathematica].
 
#* Read [http://www.machinelearning.ru/wiki/images/archive/f/fc/20150209132356%21Voron-ML-Intro-slides.pdf Introduction to Matlab]].
 
#* Read [http://www.machinelearning.ru/wiki/images/archive/f/fc/20150209132356%21Voron-ML-Intro-slides.pdf Introduction to Matlab]].
 
#* Read [http://www.machinelearning.ru/wiki/index.php?title=%D0%94%D0%BE%D0%BA%D1%83%D0%BC%D0%B5%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9_Matlab Matlab code style, reporting and documenting]].
 
#* Read [http://www.machinelearning.ru/wiki/index.php?title=%D0%94%D0%BE%D0%BA%D1%83%D0%BC%D0%B5%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9_Matlab Matlab code style, reporting and documenting]].

Latest revision as of 15:05, 13 August 2024

Set the toolbox

  1. Editors. Install LaTeX: MikTeX for Windows, TeX Live for Linux, and Mac OS. Sign up V2 OverLeaf ShareLaTeX.
  2. Install the editor TeXnic Center or its alternative WinEdt for Windows, TeXworks for Linux, and TeXmakerfor Mac OS.
  3. Editors. Install LaTeX: MikTeX for Windows, TeX Live for Linux, and Mac OS. Sign up V2 OverLeaf ShareLaTeX.
  4. Install the editor TeXnic Center or its alternative WinEdt for Windows, TeXworks for Linux, and TeXmakerfor Mac OS.
  5. Download the paper template, ZIP and compile it.
  6. References. Read BibTeX.
  7. Install bibliographic collection software JabRef (can be postponed).
  8. Communications. Sign up GitHub.
    • Run GitHub Copilot
    • Important: address and login like Name.Surname or Name-Surname (it depends on system conventions) is welcome.
    • Introductory sliders on Version Control System.
    • Introduction to GitHub.
    • The first steps in GitHub.
  9. Download a shell: Desktop.GitHub, or use a command line to synchronize your project.
  10. Sign up MachineLearning.ru. Send your login name to your coordinator (or to mlalgorithms [at] gmail [dot] com; to find the coordinator).
  11. Programming. Install Python Anaconda, PyCharm (alternative Visual Studio), Notebook online Google.Colab.
  12. Add. As alternative install and try Matlab (check of your university provides a free version), (alternative Octave), R-project, Wolfram Mathematica.
  13. Add. Read with pleasure Кутателадзе С. С. Советы эпизодическому переводчику and Сосинский А. Б. Как написать математическую статью по-английски (Ru).


Resources

Obsoleted

References to catch up

  1. A Brief Introduction to Machine Learning for Engineers by Osvaldo Simeone, 2017-2018
  2. Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz, Shai Ben-David, 2014
  3. Mathematics for Machine Learning by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong
  4. Mathematics for Physicists: Introductory Concepts and Methods by Alexander Altland & Jan von Delf
  5. Python notes for professionals by GoalKicker.com Free Programming Books.
  6. Лагутин М.Б. Наглядная математическая статистика, М.: Бином, 2009. См. также вырезку (Ru)
  7. Bishop C.P. Pattern recognition and machine learning, Berlin: Springer, 2008
  8. MackKay D. Information Theory, Pattern Recognition and Neural Networks, Inference.org.uk, 2009

Homework

  1. Fill the questionnaire week m1 – Imagine and plan a project
  2. Watch video
  3. Watch the video Риски и результаты в машинном обучении Risics and results in machine learning
  4. Rigorously follow all the steps of section Set the toolbox
  5. Check if you can briefly explain what is
    1. statistical hypothesis
    2. statistical inference,
    3. conditional and joint distributions,
    4. likelihood function,
    5. algebraic structure


  1. Watch the video Моя первая научная статья 0 My first scientific paper, week 0