Difference between revisions of "Fundamental theorems"
From m1p.org
| (43 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| − | + | {{#seo: | |
| + | |title=Fundamental Theorems of Machine Learning | ||
| + | |titlemode=replace | ||
| + | |keywords=Fundamental theorems of Machine Learning | ||
| + | |description=The course Fundamental Theorems of Machine Learning studies techniques and practice of theorem formulations and proofs in machine learning. | ||
| + | }} | ||
| + | To make the results of scientific research well-founded, introduce the techniques and practices of theorem formulations and proofs in machine learning. | ||
| − | + | Why does one need to convey an important message, a scientific result, as a theorem? | |
| − | + | # Theorems are the most important messages in the field of research. | |
| + | # Theorems present results in the language of mathematics by generality and rigor. | ||
| + | # Theorems are at the heart of mathematics and play a central role in its aesthetics. | ||
| − | + | Theorems present the message immediately and leave reasoning for later. The direct narration puts reason first and the results later. | |
| − | + | * How does direct narration transform into fast narration? | |
| − | + | * How to find, state, and prove theorems in our work? | |
| − | |||
| − | + | Both narration styles refer to progressions | |
| − | + | # Textbook: Definition <math>\to</math> (Axiom set) <math>\to</math> Theorem <math>\to</math> Proof <math>\to</math> Corollaries <math>\to</math> Examples <math>\to</math> Impact to applications | |
| − | + | # Scientific discovery: Application problems <math>\to</math> Problem generalisations <math>\to</math> Useful algebraic platform <math>\to</math> Definitions <math>\to</math> Axiom set | |
| + | In practice, we mimic the first part of the progression, then learn to discover patterns and formulate theorems. | ||
| − | + | ==Theorems of Machine Learning== | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
# Fundamental theorem of linear algebra [https://www.engineering.iastate.edu/~julied/classes/CE570/Notes/strangpaper.pdf S] | # Fundamental theorem of linear algebra [https://www.engineering.iastate.edu/~julied/classes/CE570/Notes/strangpaper.pdf S] | ||
# Singular values decomposition and spectral theorem [https://en.wikipedia.org/wiki/Spectral_theorem W] | # Singular values decomposition and spectral theorem [https://en.wikipedia.org/wiki/Spectral_theorem W] | ||
| Line 74: | Line 29: | ||
# Kolmogorov–Arnold representation theorem [https://en.wikipedia.org/wiki/Kolmogorov–Arnold_representation_theorem W] | # Kolmogorov–Arnold representation theorem [https://en.wikipedia.org/wiki/Kolmogorov–Arnold_representation_theorem W] | ||
# Universal approximation theorem by Cybenko [https://en.wikipedia.org/wiki/Universal_approximation_theorem W] | # Universal approximation theorem by Cybenko [https://en.wikipedia.org/wiki/Universal_approximation_theorem W] | ||
| − | # Deep neural network theorem | + | # Deep neural network theorem [https://github.com/MarkPotanin/GeneticOpt/blob/master/Potanin2019NNStructure_APX.pdf Mark] |
| + | # Inverse function theorem and Jacobian [https://en.wikipedia.org/wiki/Inverse_function_theorem W] | ||
# No free lunch theorem by Wolpert [https://en.wikipedia.org/wiki/No_free_lunch_theorem W] | # No free lunch theorem by Wolpert [https://en.wikipedia.org/wiki/No_free_lunch_theorem W] | ||
# RKHS by Aronszajn and Mercer's theorem [https://en.wikipedia.org/wiki/Mercer%27s_theorem W] | # RKHS by Aronszajn and Mercer's theorem [https://en.wikipedia.org/wiki/Mercer%27s_theorem W] | ||
| Line 90: | Line 46: | ||
# Multi-armed bandit theorem | # Multi-armed bandit theorem | ||
# Copulas and Sklar's theorem [https://en.wikipedia.org/wiki/Copula_(probability_theory) W] | # Copulas and Sklar's theorem [https://en.wikipedia.org/wiki/Copula_(probability_theory) W] | ||
| + | # Boosting theorem Freud, Shapire, 1996, 1995 | ||
| + | # Bootstrap theorem (statistical estimations): Ergodic theorem | ||
| + | # Miscellaneous [http://www.machinelearning.ru/wiki/images/3/33/BershteinFonMises.pdf BershteinFonMises-1], [http://www.machinelearning.ru/wiki/images/3/33/BershteinFonMises.pdf BershteinFonMises-2], PАС_learning (compression induces learning), [http://www.machinelearning.ru/wiki/images/b/ba/PAC_learning_compress.pdf PAC_learning_compress] | ||
| − | ==Theorem types== | + | ===Theorem types=== |
| − | + | <!--* Должна быть показана связь между различными областями машинного обучения | |
| − | * Должна быть показана связь между различными областями машинного обучения | + | * Вероятность, обоснованность, порождение и выбор, корректность по Адамару, снижение размерности, сходимость алгоритмов --> |
| − | * Вероятность, обоснованность, порождение и выбор, корректность по Адамару, снижение размерности, сходимость алгоритмов | + | * Uniqueness, existence |
| − | * | + | * Universality |
| − | * | + | * Convergence[https://www.youtube.com/watch?v=Ajar_6MAOLw YouTube] |
| − | * | + | <!--Поточечно |
| − | |||
**Равномерно | **Равномерно | ||
**По мере | **По мере | ||
| Line 116: | Line 74: | ||
**Эффективная | **Эффективная | ||
**Omitted-variable bias | **Omitted-variable bias | ||
| − | * | + | * Almost sure, almost everywhere |
| + | --> | ||
| + | * Complexity | ||
| + | * Properties of estimations | ||
| + | * Bounds | ||
| − | == | + | === A paper with theorems includes=== |
| − | + | # Introduction: the main message briefly | |
| − | # | + | # If necessary (it could be introduced during the talk) |
| − | + | ## Axiom sets | |
| − | + | ## Definitions | |
| − | + | ## Algebraic structures | |
| − | + | ## Notations | |
| − | + | # Theorem formulation and exact proof | |
| − | + | ## The author's variant of the proof could be ameliorated | |
| − | + | # Corollaries | |
| − | + | # Theorem significance and applications | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
==References== | ==References== | ||
| − | + | ===Principles=== | |
# Mathematical statistics by A.A. Borovkov, 1998 | # Mathematical statistics by A.A. Borovkov, 1998 | ||
# [https://www.di.ens.fr/~fbach/ltfp_book.pdf Learning Theory from First Principles] by Francis Bach, 2021 <!--https://www.di.ens.fr/~fbach/learning_theory_class/index.html--> | # [https://www.di.ens.fr/~fbach/ltfp_book.pdf Learning Theory from First Principles] by Francis Bach, 2021 <!--https://www.di.ens.fr/~fbach/learning_theory_class/index.html--> | ||
| − | # Айзерман М.А., Браверман Э.М., Розоноэр Л.И. Метод потенциальных функций в теории обучения машин, 1970 (глава про сходимость) | + | # [https://cs.uwaterloo.ca/~y328yu/classics/kernel.pdf Theoretical foundations of potential function method in pattern recognition] by M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer // Avtomatica i Telemekhanica, 1964. Vol. 25, pp. 917-936. |
| + | <!-- Айзерман М.А., Браверман Э.М., Розоноэр Л.И. Метод потенциальных функций в теории обучения машин, 1970 (глава про сходимость)--> | ||
===Proof techniques=== | ===Proof techniques=== | ||
| Line 293: | Line 111: | ||
===Methodology=== | ===Methodology=== | ||
# [http://eqworld.ipmnet.ru/ru/library/books/Klini1957ru.djvu Introduction to Metamathematics] by Stephen Cole Kleene, 1950 | # [http://eqworld.ipmnet.ru/ru/library/books/Klini1957ru.djvu Introduction to Metamathematics] by Stephen Cole Kleene, 1950 | ||
| − | # Science and Method by | + | # Science and Method by Henri Poincaré, 1908 |
# A Summary of Scientific Method by Peter Kosso, 2011 | # A Summary of Scientific Method by Peter Kosso, 2011 | ||
# Being a Researcher: An Informatics Perspective by Carlo Ghezzi, 2020 | # Being a Researcher: An Informatics Perspective by Carlo Ghezzi, 2020 | ||
| Line 300: | Line 118: | ||
# [https://en.wikipedia.org/wiki/List_of_mathematical_jargon List of mathematical jargon] on Wikipedia | # [https://en.wikipedia.org/wiki/List_of_mathematical_jargon List of mathematical jargon] on Wikipedia | ||
# [https://cs9.pikabu.ru/post_img/big/2018/05/21/9/1526915408141416733.jpg Пикабу. Типичные методы доказательства, 2018] (если вы чувствуете, что несет не туда) | # [https://cs9.pikabu.ru/post_img/big/2018/05/21/9/1526915408141416733.jpg Пикабу. Типичные методы доказательства, 2018] (если вы чувствуете, что несет не туда) | ||
| + | |||
| + | === Supplementary material=== | ||
| + | # Three works by Greg Yang [https://arxiv.org/pdf/1910.12478.pdf arXiv:1910.12478], [https://arxiv.org/pdf/2006.14548 arXiv:2006.14548], [https://arxiv.org/pdf/2009.10685.pdf arXiv:2009.10685] [https://www.youtube.com/watch?v=kc9ll6B-xVU&list=PLt1IfGj6-_-ewBQJDVMJOJNlW5AbY6D3p&index=4&fbclid=IwAR3kIUQZWsh9j_Xp2TYb5ZmcsH7nFDIpCuRnmeoxoRJyPuxKvFyxTRI3ypY Youtube Rus] | ||
| + | # Theorems on flows by Johann Brehmera and Kyle Cranmera [https://arxiv.org/pdf/2003.13913v2.pdf arXiv:2003.13913v2] | ||
| + | * GitHub project to upload your text [https://github.com/Intelligent-Systems-Phystech/FundamentalTheoremsML Intelligent-Systems-Phystech/FundamentalTheoremsML] | ||
| + | |||
| + | |||
| + | <!-- Each class contains a lecturer's talk on one of the fundamental theorems (<math>40' = 30' + 10'</math> discussion) and two students' talks (each <math>20' = 15' + 5'</math> discussion). Each student delivers two talks: on a theorem, which is formulated in a paper from the list of student thesis works' references, and on a theorem, which is formulated and proved by the student. | ||
| + | |||
| + | It is welcome to: make variants of our formulations and proofs, and re-formulate significant messages of researchers, and formulate these messages as theorems. --> | ||
Latest revision as of 16:08, 8 February 2026
To make the results of scientific research well-founded, introduce the techniques and practices of theorem formulations and proofs in machine learning.
Why does one need to convey an important message, a scientific result, as a theorem?
- Theorems are the most important messages in the field of research.
- Theorems present results in the language of mathematics by generality and rigor.
- Theorems are at the heart of mathematics and play a central role in its aesthetics.
Theorems present the message immediately and leave reasoning for later. The direct narration puts reason first and the results later.
- How does direct narration transform into fast narration?
- How to find, state, and prove theorems in our work?
Both narration styles refer to progressions
- Textbook: Definition \(\to\) (Axiom set) \(\to\) Theorem \(\to\) Proof \(\to\) Corollaries \(\to\) Examples \(\to\) Impact to applications
- Scientific discovery: Application problems \(\to\) Problem generalisations \(\to\) Useful algebraic platform \(\to\) Definitions \(\to\) Axiom set
In practice, we mimic the first part of the progression, then learn to discover patterns and formulate theorems.
Contents
Theorems of Machine Learning
- Fundamental theorem of linear algebra S
- Singular values decomposition and spectral theorem W
- Gauss–Markov-(Aitken) theorem W
- Principal component analysis W
- Karhunen–Loève theorem W
- Kolmogorov–Arnold representation theorem W
- Universal approximation theorem by Cybenko W
- Deep neural network theorem Mark
- Inverse function theorem and Jacobian W
- No free lunch theorem by Wolpert W
- RKHS by Aronszajn and Mercer's theorem W
- Representer theorem by Schölkopf, Herbrich, and Smola W
- Convolution theorem (FT, convolution, correlation with CNN examples) W
- Fourier inversion theorem W
- Wiener–Khinchin theorem about autocorrelation and spectral decomposition W
- Parseval's theorem (and uniform, non-uniform convergence) W
- Probably approximately correct learning with the theorem about compression means learnability
- Bernstein–von Mises theorem W
- Holland's schema theorem W
- Variational approximation
- Convergence of random variables and Kloek's theorem W
- Exponential family of distributions and Nelder's theorem
- Multi-armed bandit theorem
- Copulas and Sklar's theorem W
- Boosting theorem Freud, Shapire, 1996, 1995
- Bootstrap theorem (statistical estimations): Ergodic theorem
- Miscellaneous BershteinFonMises-1, BershteinFonMises-2, PАС_learning (compression induces learning), PAC_learning_compress
Theorem types
- Uniqueness, existence
- Universality
- ConvergenceYouTube
- Complexity
- Properties of estimations
- Bounds
A paper with theorems includes
- Introduction: the main message briefly
- If necessary (it could be introduced during the talk)
- Axiom sets
- Definitions
- Algebraic structures
- Notations
- Theorem formulation and exact proof
- The author's variant of the proof could be ameliorated
- Corollaries
- Theorem significance and applications
References
Principles
- Mathematical statistics by A.A. Borovkov, 1998
- Learning Theory from First Principles by Francis Bach, 2021
- Theoretical foundations of potential function method in pattern recognition by M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer // Avtomatica i Telemekhanica, 1964. Vol. 25, pp. 917-936.
Proof techniques
- Proofs and Mathematical Reasoning by Agata Stefanowicz, 2014
- The nuts and bolts of proofs by Antonella Cupillari, 2013
- Theorems, Corollaries, Lemmas, and Methods of Proof by Richard J. Rossi, 1956
- Problem Books in Mathematics by P.R. Halmos (editor), 1990
- Les contre-exemples en mathématique par Bertrand Hauchecorne, 2007
- Kolmogorov and Mathematical Logic by Vladimir A. Uspensky // The Journal of Symbolic Logic, Vol. 57, No. 2 (Jun., 1992), 385-412.
- Что такое аксиоматический метод? В.А. Успенский, 2001
- Аксиоматический метод. Е.Е. Золин, 2015
Methodology
- Introduction to Metamathematics by Stephen Cole Kleene, 1950
- Science and Method by Henri Poincaré, 1908
- A Summary of Scientific Method by Peter Kosso, 2011
- Being a Researcher: An Informatics Perspective by Carlo Ghezzi, 2020
- The definitive glossary of higher mathematical jargon by Math Vault, 2015
- The definitive guide to learning higher mathematics: 10 principles to mathematical transcendence by Math Vault, 2020
- List of mathematical jargon on Wikipedia
- Пикабу. Типичные методы доказательства, 2018 (если вы чувствуете, что несет не туда)
Supplementary material
- Three works by Greg Yang arXiv:1910.12478, arXiv:2006.14548, arXiv:2009.10685 Youtube Rus
- Theorems on flows by Johann Brehmera and Kyle Cranmera arXiv:2003.13913v2
- GitHub project to upload your text Intelligent-Systems-Phystech/FundamentalTheoremsML