Difference between revisions of "Week 1"
From Research management course
m |
|||
(12 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{#seo: | ||
+ | |title=Course My first scientific paper: Week 1 | ||
+ | |titlemode=replace | ||
+ | |keywords=My first scientific paper | ||
+ | |description=Course My first scientific paper: The goal of the week is to express your project view, and set the toolbox. | ||
+ | }} | ||
+ | |||
==Set the toolbox== | ==Set the toolbox== | ||
− | # '''Editors'''. Install LaTeX: [http://miktex.org MikTeX] for | + | # '''Editors'''. Install LaTeX: [http://miktex.org MikTeX] for Windows, [http://www.tug.org/texlive/ TeX Live] for Linux, and Mac OS. Sign up [https://v2.overleaf.com/ V2 OverLeaf ShareLaTeX]. |
# Install the editor [http://www.texniccenter.org/ TeXnic Center] or its alternative [http://www.winedt.com/ WinEdt] for Windows, [http://www.tug.org/texworks/ TeXworks] for Linux, and [https://www.xm1math.net/texmaker/ TeXmaker]for Mac OS. | # Install the editor [http://www.texniccenter.org/ TeXnic Center] or its alternative [http://www.winedt.com/ WinEdt] for Windows, [http://www.tug.org/texworks/ TeXworks] for Linux, and [https://www.xm1math.net/texmaker/ TeXmaker]for Mac OS. | ||
#* Read [http://www.machinelearning.ru/wiki/index.php?title=LaTeX LaTeX on MachineLearning] (Ru). | #* Read [http://www.machinelearning.ru/wiki/index.php?title=LaTeX LaTeX on MachineLearning] (Ru). | ||
#* Useful: [https://en.wikibooks.org/wiki/LaTeX Wikibooks LaTeX], [http://www.machinelearning.ru/wiki/images/e/e4/LaTeX_examples.pdf К.В.Воронцов. LaTeX2e в примерах] (Ru). | #* Useful: [https://en.wikibooks.org/wiki/LaTeX Wikibooks LaTeX], [http://www.machinelearning.ru/wiki/images/e/e4/LaTeX_examples.pdf К.В.Воронцов. LaTeX2e в примерах] (Ru). | ||
− | # '''Editors'''. Install LaTeX: [http://miktex.org MikTeX] for | + | # '''Editors'''. Install LaTeX: [http://miktex.org MikTeX] for Windows, [http://www.tug.org/texlive/ TeX Live] for Linux, and Mac OS. Sign up [https://v2.overleaf.com/ V2 OverLeaf ShareLaTeX]. |
# Install the editor [http://www.texniccenter.org/ TeXnic Center] or its alternative [http://www.winedt.com/ WinEdt] for Windows, [http://www.tug.org/texworks/ TeXworks] for Linux, and [https://www.xm1math.net/texmaker/ TeXmaker]for Mac OS. | # Install the editor [http://www.texniccenter.org/ TeXnic Center] or its alternative [http://www.winedt.com/ WinEdt] for Windows, [http://www.tug.org/texworks/ TeXworks] for Linux, and [https://www.xm1math.net/texmaker/ TeXmaker]for Mac OS. | ||
#* Read [http://www.machinelearning.ru/wiki/index.php?title=LaTeX LaTeX on MachineLearning] (Ru). | #* Read [http://www.machinelearning.ru/wiki/index.php?title=LaTeX LaTeX on MachineLearning] (Ru). | ||
Line 19: | Line 26: | ||
# Install bibliographic collection software [http://jabref.sourceforge.net/ JabRef] (can be postponed). | # Install bibliographic collection software [http://jabref.sourceforge.net/ JabRef] (can be postponed). | ||
# '''Communications'''. Sign up [https://github.com/ GitHub]. | # '''Communications'''. Sign up [https://github.com/ GitHub]. | ||
+ | #* Run GitHub Copilot | ||
#* Important: address and login like Name.Surname or Name-Surname (it depends on system conventions) is welcome. | #* Important: address and login like Name.Surname or Name-Surname (it depends on system conventions) is welcome. | ||
#* Introductory sliders [http://www.machinelearning.ru/wiki/images/2/29/MMP_Praktikum317_2013s_VCS.pdf on Version Control System]. | #* Introductory sliders [http://www.machinelearning.ru/wiki/images/2/29/MMP_Praktikum317_2013s_VCS.pdf on Version Control System]. | ||
Line 24: | Line 32: | ||
#* The first steps in [https://guides.github.com/activities/hello-world/ GitHub]. | #* The first steps in [https://guides.github.com/activities/hello-world/ GitHub]. | ||
# Download a shell: [https://desktop.github.com/ Desktop.GitHub], or use a command line to synchronize your project. | # Download a shell: [https://desktop.github.com/ Desktop.GitHub], or use a command line to synchronize your project. | ||
− | # Sign up [http://www.machinelearning.ru/ MachineLearning.ru]. Send your login name to your coordinator or to mlalgorithms [at] gmail [dot] com. | + | # Sign up [http://www.machinelearning.ru/ MachineLearning.ru]. Send your login name to your coordinator (or to mlalgorithms [at] gmail [dot] com; to find the coordinator). |
− | # Create your page [http://www.machinelearning.ru/wiki/index.php?title=%D0%A3%D1%87%D0%B0%D1%81%D1%82%D0%BD%D0%B8%D0%BA:Anastasiya example]. | + | <!-- # Create your page [http://www.machinelearning.ru/wiki/index.php?title=%D0%A3%D1%87%D0%B0%D1%81%D1%82%D0%BD%D0%B8%D0%BA:Anastasiya example]. --> |
<!--# To state a problem (write an essay) using notebook [https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Typesetting%20Equations.html see example] in MathJax.--> | <!--# To state a problem (write an essay) using notebook [https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Typesetting%20Equations.html see example] in MathJax.--> | ||
<!-- # Поставить ссылку на личную страницу со своей фамилии в таблице на странице группы.--> | <!-- # Поставить ссылку на личную страницу со своей фамилии в таблице на странице группы.--> | ||
Line 32: | Line 40: | ||
#* Development for ML: [https://pytorch.org/ PyTorch] | #* Development for ML: [https://pytorch.org/ PyTorch] | ||
#* Style formatting: [https://www.python.org/dev/peps/pep-0008/ Codestyle pep8] | #* Style formatting: [https://www.python.org/dev/peps/pep-0008/ Codestyle pep8] | ||
− | # '''Add.''' As alternative install and try [http://www.machinelearning.ru/wiki/index.php?title=Matlab Matlab ( | + | # '''Add.''' As alternative install and try [http://www.machinelearning.ru/wiki/index.php?title=Matlab Matlab (check of your university provides a free version)], (alternative [http://www.gnu.org/software/octave/ Octave]), [https://www.r-project.org/ R-project], [https://www.wolframcloud.com/ Wolfram Mathematica]. |
#* Read [http://www.machinelearning.ru/wiki/images/archive/f/fc/20150209132356%21Voron-ML-Intro-slides.pdf Introduction to Matlab]]. | #* Read [http://www.machinelearning.ru/wiki/images/archive/f/fc/20150209132356%21Voron-ML-Intro-slides.pdf Introduction to Matlab]]. | ||
#* Read [http://www.machinelearning.ru/wiki/index.php?title=%D0%94%D0%BE%D0%BA%D1%83%D0%BC%D0%B5%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9_Matlab Matlab code style, reporting and documenting]]. | #* Read [http://www.machinelearning.ru/wiki/index.php?title=%D0%94%D0%BE%D0%BA%D1%83%D0%BC%D0%B5%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9_Matlab Matlab code style, reporting and documenting]]. | ||
Line 41: | Line 49: | ||
==Express your project view == | ==Express your project view == | ||
* Write four lines: a goal and motivation (what and why?) for any project you believe is worth noting. Refer to [[Projects]]. | * Write four lines: a goal and motivation (what and why?) for any project you believe is worth noting. Refer to [[Projects]]. | ||
− | * If you have subscribed to this course with your | + | * If you have subscribed to this course with your project: please connect your advisor or consultant and write your project description as shown in the [[Projects|project description template]]. |
* Go to Stepik: | * Go to Stepik: | ||
*# Sign up to the [https://stepik.org/catalog?auth=registration stepik.org]. | *# Sign up to the [https://stepik.org/catalog?auth=registration stepik.org]. | ||
*# Run the course [https://stepik.org/course/90240/promo m1p]. | *# Run the course [https://stepik.org/course/90240/promo m1p]. | ||
− | *# Put your project description | + | *# Put your project description in Step 1.1. |
− | *# Participate | + | *# Participate in the peer review. |
− | + | --> | |
− | |||
==Resources== | ==Resources== | ||
+ | * [https://www.youtube.com/watch?v=VNgm-oXENnc&t=627s Video week 1] | ||
+ | * [http://www.machinelearning.ru/wiki/images/d/dc/m1p_2024_lect1.pdf Slides week 1]. | ||
+ | Obsoleted | ||
* [http://www.machinelearning.ru/wiki/images/c/c9/M1p_lect0.pdf Slides for week 0]. | * [http://www.machinelearning.ru/wiki/images/c/c9/M1p_lect0.pdf Slides for week 0]. | ||
* [https://www.youtube.com/watch?v=vRUYqnas5fo Video for week 0]. | * [https://www.youtube.com/watch?v=vRUYqnas5fo Video for week 0]. | ||
Line 60: | Line 70: | ||
# [https://arxiv.org/pdf/1709.02840 A Brief Introduction to Machine Learning for Engineers by Osvaldo Simeone, 2017-2018] | # [https://arxiv.org/pdf/1709.02840 A Brief Introduction to Machine Learning for Engineers by Osvaldo Simeone, 2017-2018] | ||
# [https://www.semanticscholar.org/paper/Understanding-Machine-Learning%3A-From-Theory-to-Shalev-Shwartz-Ben-David/ce615ae61d67db8537e981a0a08da7f0f2ff1cee Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz, Shai Ben-David, 2014] | # [https://www.semanticscholar.org/paper/Understanding-Machine-Learning%3A-From-Theory-to-Shalev-Shwartz-Ben-David/ce615ae61d67db8537e981a0a08da7f0f2ff1cee Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz, Shai Ben-David, 2014] | ||
− | # [https://mml-book.github.io/book/mml-book.pdf Mathematics for Machine | + | # [https://mml-book.github.io/book/mml-book.pdf Mathematics for Machine Learning by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong] |
# [https://klassfeldtheorie.files.wordpress.com/2018/10/mathematische-methoden-310117.pdf Mathematics for Physicists: Introductory Concepts and Methods by Alexander Altland & Jan von Delf] | # [https://klassfeldtheorie.files.wordpress.com/2018/10/mathematische-methoden-310117.pdf Mathematics for Physicists: Introductory Concepts and Methods by Alexander Altland & Jan von Delf] | ||
# [https://unglueit-files.s3.amazonaws.com/ebf/617027d14a3046998f54b31503ab7bca.pdf Python notes for professionals by GoalKicker.com Free Programming Books.] | # [https://unglueit-files.s3.amazonaws.com/ebf/617027d14a3046998f54b31503ab7bca.pdf Python notes for professionals by GoalKicker.com Free Programming Books.] | ||
Line 67: | Line 77: | ||
# [http://www.inference.org.uk/itprnn/book.pdf MackKay D. Information Theory, Pattern Recognition and Neural Networks, Inference.org.uk, 2009] | # [http://www.inference.org.uk/itprnn/book.pdf MackKay D. Information Theory, Pattern Recognition and Neural Networks, Inference.org.uk, 2009] | ||
− | --> | + | ==Homework== |
+ | # [https://forms.gle/FEJ28KEjxdj6Zgha7 Fill the questionnaire week m1] – Imagine and plan a project | ||
+ | # Watch [https://www.youtube.com/watch?v=VNgm-oXENnc&t=627s video] | ||
+ | # Watch the video [https://youtu.be/eXiXxmz3lnA Риски и результаты в машинном обучении] Risics and results in machine learning | ||
+ | # ''Rigorously'' follow all the steps of section '''Set the toolbox''' | ||
+ | # ''Check'' if you can briefly explain what is | ||
+ | ## [https://en.wikipedia.org/wiki/Test_statistic statistical hypothesis] | ||
+ | ## [https://en.wikipedia.org/wiki/Maximum_likelihood_estimation statistical inference], | ||
+ | ## [https://en.wikipedia.org/wiki/Conditional_probability_distribution conditional] and [https://en.wikipedia.org/wiki/Joint_probability_distribution joint] distributions, | ||
+ | ## [https://en.wikipedia.org/wiki/Likelihood_function likelihood function], | ||
+ | ## [https://en.wikipedia.org/wiki/Algebraic_structure algebraic structure] | ||
+ | |||
+ | |||
+ | <!--# Look through the materials of [[Week 0]] and [[Week 1]] and the slides.--> | ||
+ | # Watch the video [https://www.youtube.com/watch?v=vRUYqnas5fo Моя первая научная статья 0] My first scientific paper, week 0 |
Latest revision as of 15:05, 13 August 2024
Set the toolbox
- Editors. Install LaTeX: MikTeX for Windows, TeX Live for Linux, and Mac OS. Sign up V2 OverLeaf ShareLaTeX.
- Install the editor TeXnic Center or its alternative WinEdt for Windows, TeXworks for Linux, and TeXmakerfor Mac OS.
- Read LaTeX on MachineLearning (Ru).
- Useful: Wikibooks LaTeX, К.В.Воронцов. LaTeX2e в примерах (Ru).
- Editors. Install LaTeX: MikTeX for Windows, TeX Live for Linux, and Mac OS. Sign up V2 OverLeaf ShareLaTeX.
- Install the editor TeXnic Center or its alternative WinEdt for Windows, TeXworks for Linux, and TeXmakerfor Mac OS.
- Read LaTeX on MachineLearning (Ru).
- Useful: Wikibooks LaTeX, К.В.Воронцов. LaTeX2e в примерах.
- Read Львовский С.М. Набор и верстка в системе LaTeX (Ru).
- Note Мильчин А.Э. Чельцова Л.К. Справочник издателя и автора (Ru).
- Download the paper template, ZIP and compile it.
- References. Read BibTeX.
- Install bibliographic collection software JabRef (can be postponed).
- Communications. Sign up GitHub.
- Run GitHub Copilot
- Important: address and login like Name.Surname or Name-Surname (it depends on system conventions) is welcome.
- Introductory sliders on Version Control System.
- Introduction to GitHub.
- The first steps in GitHub.
- Download a shell: Desktop.GitHub, or use a command line to synchronize your project.
- Sign up MachineLearning.ru. Send your login name to your coordinator (or to mlalgorithms [at] gmail [dot] com; to find the coordinator).
- Programming. Install Python Anaconda, PyCharm (alternative Visual Studio), Notebook online Google.Colab.
- Development for ML: PyTorch
- Style formatting: Codestyle pep8
- Add. As alternative install and try Matlab (check of your university provides a free version), (alternative Octave), R-project, Wolfram Mathematica.
- Add. Read with pleasure Кутателадзе С. С. Советы эпизодическому переводчику and Сосинский А. Б. Как написать математическую статью по-английски (Ru).
Resources
Obsoleted
References to catch up
- A Brief Introduction to Machine Learning for Engineers by Osvaldo Simeone, 2017-2018
- Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz, Shai Ben-David, 2014
- Mathematics for Machine Learning by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong
- Mathematics for Physicists: Introductory Concepts and Methods by Alexander Altland & Jan von Delf
- Python notes for professionals by GoalKicker.com Free Programming Books.
- Лагутин М.Б. Наглядная математическая статистика, М.: Бином, 2009. См. также вырезку (Ru)
- Bishop C.P. Pattern recognition and machine learning, Berlin: Springer, 2008
- MackKay D. Information Theory, Pattern Recognition and Neural Networks, Inference.org.uk, 2009
Homework
- Fill the questionnaire week m1 – Imagine and plan a project
- Watch video
- Watch the video Риски и результаты в машинном обучении Risics and results in machine learning
- Rigorously follow all the steps of section Set the toolbox
- Check if you can briefly explain what is
- statistical hypothesis
- statistical inference,
- conditional and joint distributions,
- likelihood function,
- algebraic structure
- Watch the video Моя первая научная статья 0 My first scientific paper, week 0