Difference between revisions of "Todo list"

From Research management course
Jump to: navigation, search
m
m
Line 10: Line 10:
 
# Read [http://en.wikipedia.org/wiki/Bibtex BibTeX].
 
# Read [http://en.wikipedia.org/wiki/Bibtex BibTeX].
 
#* [http://liinwww.ira.uka.de/csbib?strijov%20nonlinear An example of a bibliographic database].
 
#* [http://liinwww.ira.uka.de/csbib?strijov%20nonlinear An example of a bibliographic database].
#* [http://liinwww.ira.uka.de/cgi-bin/bibshow?e=Njtd0ECMQ03121/fyqboefe%7d81352582&r=bibtex&mode=intra An example of a biliographic record].
+
#* [http://liinwww.ira.uka.de/cgi-bin/bibshow?e=Njtd0ECMQ03121/fyqboefe%7d81352582&r=bibtex&mode=intra An example of a bibliographic record].
#* [https://docs.google.com/document/d/10JgJMieX13R5vlrCfJPrMqU9Rsd4c4JzaGytU8rWFE4/edit?usp=sharing An example of draft revirew LinkReview].
+
#* [https://docs.google.com/document/d/10JgJMieX13R5vlrCfJPrMqU9Rsd4c4JzaGytU8rWFE4/edit?usp=sharing An example of draft review LinkReview].
#* [http://en.wikipedia.org/wiki/List_of_academic_databases_and_search_engines List of databasea and search engines].
+
#* [http://en.wikipedia.org/wiki/List_of_academic_databases_and_search_engines List of databases and search engines].
#* [https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research List of datasets for Machine Learning projects].
+
#* [https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research List of data-sets for Machine Learning projects].
 
# Install bibliographic collection software [http://jabref.sourceforge.net/ JabRef] (can be postponed).
 
# Install bibliographic collection software [http://jabref.sourceforge.net/ JabRef] (can be postponed).
 
# '''Communications'''. Sign up [https://github.com/ GitHub].
 
# '''Communications'''. Sign up [https://github.com/ GitHub].
#* Inportant: address and login like Name.Surname or Name-Surname (it depends on system conventions) is welcome.
+
#* Important: address and login like Name.Surname or Name-Surname (it depends on system conventions) is welcome.
 
#* Introductory sliders [http://www.machinelearning.ru/wiki/images/2/29/MMP_Praktikum317_2013s_VCS.pdf on Version Control System].
 
#* Introductory sliders [http://www.machinelearning.ru/wiki/images/2/29/MMP_Praktikum317_2013s_VCS.pdf on Version Control System].
 
#* Introduction to [https://guides.github.com/ GitHub].
 
#* Introduction to [https://guides.github.com/ GitHub].
Line 26: Line 26:
 
<!-- # Поставить ссылку на личную страницу со своей фамилии в таблице на странице группы.-->
 
<!-- # Поставить ссылку на личную страницу со своей фамилии в таблице на странице группы.-->
 
# Install [https://hangouts.google.com/ Hangouts], [http://www.machinelearning.ru/wiki/index.php?title=%D0%A1%D0%BA%D0%B0%D0%B9%D0%BF_%28Skype%29 Skype - read instructions].
 
# Install [https://hangouts.google.com/ Hangouts], [http://www.machinelearning.ru/wiki/index.php?title=%D0%A1%D0%BA%D0%B0%D0%B9%D0%BF_%28Skype%29 Skype - read instructions].
# '''Programming'''. Install Python [https://anaconda.org/anaconda/python Anakonda], [https://www.jetbrains.com/pycharm/ PyCharm] (alternative [https://code.visualstudio.com/ Visual Studio]), Notebook online [https://colab.research.google.com/notebooks/welcome.ipynb#recent=true Google.Colab].
+
# '''Programming'''. Install Python [https://anaconda.org/anaconda/python Anaconda], [https://www.jetbrains.com/pycharm/ PyCharm] (alternative [https://code.visualstudio.com/ Visual Studio]), Notebook online [https://colab.research.google.com/notebooks/welcome.ipynb#recent=true Google.Colab].
#* Development for ML: Pytorch
+
#* Development for ML: PyTorch
 
#* Style formatting: Codestyle pep8
 
#* Style formatting: Codestyle pep8
 
# '''Add.''' As alternative install and try [http://www.machinelearning.ru/wiki/index.php?title=Matlab Matlab (MIPT provides free version)], (alternative [http://www.gnu.org/software/octave/ Octave]), [https://www.r-project.org/ R-project], [https://www.wolframcloud.com/ Wofram Mathematica].
 
# '''Add.''' As alternative install and try [http://www.machinelearning.ru/wiki/index.php?title=Matlab Matlab (MIPT provides free version)], (alternative [http://www.gnu.org/software/octave/ Octave]), [https://www.r-project.org/ R-project], [https://www.wolframcloud.com/ Wofram Mathematica].
#* Read [http://www.machinelearning.ru/wiki/images/archive/f/fc/20150209132356%21Voron-ML-Intro-slides.pdf Introducton to Matlab]].
+
#* Read [http://www.machinelearning.ru/wiki/images/archive/f/fc/20150209132356%21Voron-ML-Intro-slides.pdf Introduction to Matlab]].
 
#* Read [http://www.machinelearning.ru/wiki/index.php?title=%D0%94%D0%BE%D0%BA%D1%83%D0%BC%D0%B5%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9_Matlab Matlab code style, reporting and documenting]].
 
#* Read [http://www.machinelearning.ru/wiki/index.php?title=%D0%94%D0%BE%D0%BA%D1%83%D0%BC%D0%B5%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9_Matlab Matlab code style, reporting and documenting]].
 
#* Read [http://www.machinelearning.ru/wiki/images/1/18/MatlabStyle1p5.pdf Matlab Programming Style Guidelines].
 
#* Read [http://www.machinelearning.ru/wiki/images/1/18/MatlabStyle1p5.pdf Matlab Programming Style Guidelines].
Line 50: Line 50:
 
* [http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf Bishop C.P. Pattern recognition and machine learning, Berlin: Springer, 2008.]
 
* [http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf Bishop C.P. Pattern recognition and machine learning, Berlin: Springer, 2008.]
 
* [http://www.inference.org.uk/itprnn/book.pdf MackKay D. Information Theory, Pattern Recognition and Neural Networks, Inference.org.uk, 2009.]
 
* [http://www.inference.org.uk/itprnn/book.pdf MackKay D. Information Theory, Pattern Recognition and Neural Networks, Inference.org.uk, 2009.]
<!--
 
'''Questionnaries'''
 
* [https://goo.gl/forms/es2dEL9qBAtlYfbL2 Todo list 1: Prepare necessary tools]
 
* [https://goo.gl/forms/Z19P6Rufll0nL06a2 Select problems]
 
-->
 
  
 
== Todo -1: Subscribe to the course ==  
 
== Todo -1: Subscribe to the course ==  

Revision as of 18:07, 18 February 2020

The todo lists here corresponds to the Course schedule. Each list must be completed before the day of review. It is Wednesday 06:00 am for the 2020 Spring semester.

Todo 0: Prepare necessary tools

  1. Editing. Install LaTeX: MikTeX for Windown, TeX Live for Linux, and for Mac OS. Sign up V2 OverLeaf ShareLaTeX.
  2. Install the editor TeXnic Center or its alternative WinEdt for Windows, TeXworks for Linux, and TeXmakerfor Mac OS.
  3. Download the paper template, ZIP and compile it.
  4. Read BibTeX.
  5. Install bibliographic collection software JabRef (can be postponed).
  6. Communications. Sign up GitHub.
    • Important: address and login like Name.Surname or Name-Surname (it depends on system conventions) is welcome.
    • Introductory sliders on Version Control System.
    • Introduction to GitHub.
    • The first steps in GitHub.
  7. Download a shell: Desktop.GitHub, or use a command line to synchronise your project.
  8. Sign up MachineLearning.ru. Send a logon to your coordinator of to mlalgorithms [at] gmail [dot] com.
  9. To state a problem (write essay) using notebook see example in MathJax.
  10. Install Hangouts, Skype - read instructions.
  11. Programming. Install Python Anaconda, PyCharm (alternative Visual Studio), Notebook online Google.Colab.
    • Development for ML: PyTorch
    • Style formatting: Codestyle pep8
  12. Add. As alternative install and try Matlab (MIPT provides free version), (alternative Octave), R-project, Wofram Mathematica.
  13. Add. Read with pleasure Кутателадзе С. С. Советы эпизодическому переводчику and Сосинский А. Б. Как написать математическую статью по-английски.

Resources

References to catch up

Todo -1: Subscribe to the course

Todo before 06:00 Wednesday, February 12 th:

  1. pick up a problem from the page Try-on programming problems (get the oldest problems, they are simpler),
  2. plot one figure to illustrate the problem (plot data or analysis),
  3. write explanatory comments to the figure (what the reader sees on the figure, what conclusions follow up),
  4. an example of the figure formatting is here
  5. upload your notebook to your github repository,
  6. send the link to this notebook to mlalgorithms [at] gmail [dot] com, with the subject "Application m1p"

Todo A: Write an abstract