Difference between revisions of "Week 1"

From m1p.org
Jump to: navigation, search
Line 21: Line 21:
 
#* [http://en.wikipedia.org/wiki/List_of_academic_databases_and_search_engines List of databases and search engines].
 
#* [http://en.wikipedia.org/wiki/List_of_academic_databases_and_search_engines List of databases and search engines].
 
#* [https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research List of data-sets for Machine Learning projects].
 
#* [https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research List of data-sets for Machine Learning projects].
# Install bibliographic collection software [http://jabref.sourceforge.net/ JabRef] (can be postponed).
+
# Install bibliographic collection software [http://jabref.sourceforge.net/ JabRef].
 
# '''Communications'''. Sign up [https://github.com/ GitHub].
 
# '''Communications'''. Sign up [https://github.com/ GitHub].
 
#* Run GitHub Copilot
 
#* Run GitHub Copilot
 
#* Important: address and login like Name.Surname or Name-Surname (it depends on system conventions) is welcome.
 
#* Important: address and login like Name.Surname or Name-Surname (it depends on system conventions) is welcome.
#* Introductory sliders [http://www.machinelearning.ru/wiki/images/2/29/MMP_Praktikum317_2013s_VCS.pdf on Version Control System].
+
#* Introductory sliders [http://www.machinelearning.ru/wiki/images/2/29/MMP_Praktikum317_2013s_VCS.pdf on Version Control System] (ru).
 
#* Introduction to [https://guides.github.com/ GitHub].
 
#* Introduction to [https://guides.github.com/ GitHub].
 
#* The first steps in [https://guides.github.com/activities/hello-world/ GitHub].
 
#* The first steps in [https://guides.github.com/activities/hello-world/ GitHub].
# Download a shell: [https://desktop.github.com/ Desktop.GitHub], or use a command line to synchronize your project.
+
# Download a shell: [https://desktop.github.com/ Desktop.GitHub], or use [https://cli.github.com/manual/ the command line CLI] to synchronize your project.
 
# Sign up [http://www.machinelearning.ru/ MachineLearning.ru]. Send your login name to your coordinator (or to mlalgorithms [at] gmail [dot] com; to find the coordinator).
 
# Sign up [http://www.machinelearning.ru/ MachineLearning.ru]. Send your login name to your coordinator (or to mlalgorithms [at] gmail [dot] com; to find the coordinator).
<!-- # Create your page [http://www.machinelearning.ru/wiki/index.php?title=%D0%A3%D1%87%D0%B0%D1%81%D1%82%D0%BD%D0%B8%D0%BA:Anastasiya example]. -->
 
<!--# To state a problem (write an essay) using notebook [https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Typesetting%20Equations.html see example] in MathJax.-->
 
<!-- # Поставить ссылку на личную страницу со своей фамилии в таблице на странице группы.-->
 
<!--# Install [https://hangouts.google.com/ Hangouts], [http://www.machinelearning.ru/wiki/index.php?title=%D0%A1%D0%BA%D0%B0%D0%B9%D0%BF_%28Skype%29 Skype - read instructions].-->
 
 
# '''Programming'''. Install Python [https://anaconda.org/anaconda/python Anaconda], [https://www.jetbrains.com/pycharm/ PyCharm] (alternative [https://code.visualstudio.com/ Visual Studio]), Notebook online [https://colab.research.google.com/notebooks/welcome.ipynb#recent=true Google.Colab].
 
# '''Programming'''. Install Python [https://anaconda.org/anaconda/python Anaconda], [https://www.jetbrains.com/pycharm/ PyCharm] (alternative [https://code.visualstudio.com/ Visual Studio]), Notebook online [https://colab.research.google.com/notebooks/welcome.ipynb#recent=true Google.Colab].
 
#* Development for ML: [https://pytorch.org/ PyTorch]
 
#* Development for ML: [https://pytorch.org/ PyTorch]
Line 42: Line 38:
 
#* Read [http://www.machinelearning.ru/wiki/images/1/18/MatlabStyle1p5.pdf Matlab Programming Style Guidelines].
 
#* Read [http://www.machinelearning.ru/wiki/images/1/18/MatlabStyle1p5.pdf Matlab Programming Style Guidelines].
 
# '''Add.''' Read with pleasure [http://www.math.nsc.ru/LBRT/g2/english/ssk/r-e.pdf Кутателадзе С. С. Советы эпизодическому переводчику] and [http://www.ega-math.narod.ru/Quant/ABS.htm Сосинский А. Б. Как написать математическую статью по-английски] (Ru).
 
# '''Add.''' Read with pleasure [http://www.math.nsc.ru/LBRT/g2/english/ssk/r-e.pdf Кутателадзе С. С. Советы эпизодическому переводчику] and [http://www.ega-math.narod.ru/Quant/ABS.htm Сосинский А. Б. Как написать математическую статью по-английски] (Ru).
 
<!--
 
==Express your project view ==
 
* Write four lines: a goal and motivation (what and why?) for any project you believe is worth noting. Refer to [[Projects]].
 
* If you have subscribed to this course with your project: please connect your advisor or consultant and write your project description as shown in the [[Projects|project description template]].
 
* Go to Stepik:
 
*# Sign up to the [https://stepik.org/catalog?auth=registration stepik.org].
 
*# Run the course [https://stepik.org/course/90240/promo m1p].
 
*# Put your project description in Step 1.1.
 
*# Participate in the peer review.
 
-->
 
  
 
== Select your project ==  
 
== Select your project ==  
Line 94: Line 79:
 
## [https://en.wikipedia.org/wiki/Likelihood_function likelihood function],
 
## [https://en.wikipedia.org/wiki/Likelihood_function likelihood function],
 
## [https://en.wikipedia.org/wiki/Algebraic_structure algebraic structure]
 
## [https://en.wikipedia.org/wiki/Algebraic_structure algebraic structure]
 
 
<!--# Look through the materials of [[Week 0]] and [[Week 1]] and the slides.-->
 
# Watch the video [https://www.youtube.com/watch?v=vRUYqnas5fo Моя первая научная статья 0] My first scientific paper, week 0
 

Revision as of 17:08, 21 February 2025

The goal of this week is to set up your tools, and to select your project.

Set the toolbox

  1. Editors. Install LaTeX: MikTeX for Windows, TeX Live for Linux, and Mac OS. Sign up V2 OverLeaf ShareLaTeX.
  2. Install the editor TeXnic Center or its alternative WinEdt for Windows, TeXworks for Linux, and TeXmakerfor Mac OS.
  3. Download the paper template, ZIP and compile it.
  4. References. Read BibTeX.
  5. Install bibliographic collection software JabRef.
  6. Communications. Sign up GitHub.
    • Run GitHub Copilot
    • Important: address and login like Name.Surname or Name-Surname (it depends on system conventions) is welcome.
    • Introductory sliders on Version Control System (ru).
    • Introduction to GitHub.
    • The first steps in GitHub.
  7. Download a shell: Desktop.GitHub, or use the command line CLI to synchronize your project.
  8. Sign up MachineLearning.ru. Send your login name to your coordinator (or to mlalgorithms [at] gmail [dot] com; to find the coordinator).
  9. Programming. Install Python Anaconda, PyCharm (alternative Visual Studio), Notebook online Google.Colab.
  10. Add. As alternative install and try Matlab (check of your university provides a free version), (alternative Octave), R-project, Wolfram Mathematica.
  11. Add. Read with pleasure Кутателадзе С. С. Советы эпизодическому переводчику and Сосинский А. Б. Как написать математическую статью по-английски (Ru).

Select your project

To select your project:

  1. Look through the list of projects (Spring 2025).
  2. Find public information about the experts and consultants.
  3. Select your projects during the group discussion.
  4. Wait for confirmation from the responsible coordinator of your student group
  5. Put confirmed topics Group table (Spring 2025).
  6. Politely write your consultant and discuss your project.

Resources

Obsoleted

References to catch up

  1. A Brief Introduction to Machine Learning for Engineers by Osvaldo Simeone, 2017-2018
  2. Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz, Shai Ben-David, 2014
  3. Mathematics for Machine Learning by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong
  4. Mathematics for Physicists: Introductory Concepts and Methods by Alexander Altland & Jan von Delf
  5. Python notes for professionals by GoalKicker.com Free Programming Books.
  6. Лагутин М.Б. Наглядная математическая статистика, М.: Бином, 2009. См. также вырезку (Ru)
  7. Bishop C.P. Pattern recognition and machine learning, Berlin: Springer, 2008
  8. MackKay D. Information Theory, Pattern Recognition and Neural Networks, Inference.org.uk, 2009

Homework

  1. Fill the questionnaire week m1 – Imagine and plan a project
  2. Watch video
  3. Watch the video Риски и результаты в машинном обучении Risics and results in machine learning
  4. Rigorously follow all the steps of section Set the toolbox
  5. Check if you can briefly explain what is
    1. statistical hypothesis
    2. statistical inference,
    3. conditional and joint distributions,
    4. likelihood function,
    5. algebraic structure