Difference between revisions of "Week 1"
From Research management course
m |
|||
Line 40: | Line 40: | ||
#* Development for ML: [https://pytorch.org/ PyTorch] | #* Development for ML: [https://pytorch.org/ PyTorch] | ||
#* Style formatting: [https://www.python.org/dev/peps/pep-0008/ Codestyle pep8] | #* Style formatting: [https://www.python.org/dev/peps/pep-0008/ Codestyle pep8] | ||
− | # '''Add.''' As alternative install and try [http://www.machinelearning.ru/wiki/index.php?title=Matlab Matlab ( | + | # '''Add.''' As alternative install and try [http://www.machinelearning.ru/wiki/index.php?title=Matlab Matlab (check of your university provides a free version)], (alternative [http://www.gnu.org/software/octave/ Octave]), [https://www.r-project.org/ R-project], [https://www.wolframcloud.com/ Wolfram Mathematica]. |
#* Read [http://www.machinelearning.ru/wiki/images/archive/f/fc/20150209132356%21Voron-ML-Intro-slides.pdf Introduction to Matlab]]. | #* Read [http://www.machinelearning.ru/wiki/images/archive/f/fc/20150209132356%21Voron-ML-Intro-slides.pdf Introduction to Matlab]]. | ||
#* Read [http://www.machinelearning.ru/wiki/index.php?title=%D0%94%D0%BE%D0%BA%D1%83%D0%BC%D0%B5%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9_Matlab Matlab code style, reporting and documenting]]. | #* Read [http://www.machinelearning.ru/wiki/index.php?title=%D0%94%D0%BE%D0%BA%D1%83%D0%BC%D0%B5%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9_Matlab Matlab code style, reporting and documenting]]. |
Latest revision as of 15:05, 13 August 2024
Set the toolbox
- Editors. Install LaTeX: MikTeX for Windows, TeX Live for Linux, and Mac OS. Sign up V2 OverLeaf ShareLaTeX.
- Install the editor TeXnic Center or its alternative WinEdt for Windows, TeXworks for Linux, and TeXmakerfor Mac OS.
- Read LaTeX on MachineLearning (Ru).
- Useful: Wikibooks LaTeX, К.В.Воронцов. LaTeX2e в примерах (Ru).
- Editors. Install LaTeX: MikTeX for Windows, TeX Live for Linux, and Mac OS. Sign up V2 OverLeaf ShareLaTeX.
- Install the editor TeXnic Center or its alternative WinEdt for Windows, TeXworks for Linux, and TeXmakerfor Mac OS.
- Read LaTeX on MachineLearning (Ru).
- Useful: Wikibooks LaTeX, К.В.Воронцов. LaTeX2e в примерах.
- Read Львовский С.М. Набор и верстка в системе LaTeX (Ru).
- Note Мильчин А.Э. Чельцова Л.К. Справочник издателя и автора (Ru).
- Download the paper template, ZIP and compile it.
- References. Read BibTeX.
- Install bibliographic collection software JabRef (can be postponed).
- Communications. Sign up GitHub.
- Run GitHub Copilot
- Important: address and login like Name.Surname or Name-Surname (it depends on system conventions) is welcome.
- Introductory sliders on Version Control System.
- Introduction to GitHub.
- The first steps in GitHub.
- Download a shell: Desktop.GitHub, or use a command line to synchronize your project.
- Sign up MachineLearning.ru. Send your login name to your coordinator (or to mlalgorithms [at] gmail [dot] com; to find the coordinator).
- Programming. Install Python Anaconda, PyCharm (alternative Visual Studio), Notebook online Google.Colab.
- Development for ML: PyTorch
- Style formatting: Codestyle pep8
- Add. As alternative install and try Matlab (check of your university provides a free version), (alternative Octave), R-project, Wolfram Mathematica.
- Add. Read with pleasure Кутателадзе С. С. Советы эпизодическому переводчику and Сосинский А. Б. Как написать математическую статью по-английски (Ru).
Resources
Obsoleted
References to catch up
- A Brief Introduction to Machine Learning for Engineers by Osvaldo Simeone, 2017-2018
- Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz, Shai Ben-David, 2014
- Mathematics for Machine Learning by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong
- Mathematics for Physicists: Introductory Concepts and Methods by Alexander Altland & Jan von Delf
- Python notes for professionals by GoalKicker.com Free Programming Books.
- Лагутин М.Б. Наглядная математическая статистика, М.: Бином, 2009. См. также вырезку (Ru)
- Bishop C.P. Pattern recognition and machine learning, Berlin: Springer, 2008
- MackKay D. Information Theory, Pattern Recognition and Neural Networks, Inference.org.uk, 2009
Homework
- Fill the questionnaire week m1 – Imagine and plan a project
- Watch video
- Watch the video Риски и результаты в машинном обучении Risics and results in machine learning
- Rigorously follow all the steps of section Set the toolbox
- Check if you can briefly explain what is
- statistical hypothesis
- statistical inference,
- conditional and joint distributions,
- likelihood function,
- algebraic structure
- Watch the video Моя первая научная статья 0 My first scientific paper, week 0