Difference between revisions of "Reasoning AI system"
From m1p.org
(Created page with "This page collects links to materials on reasoning AI. The interpretability, or presence of logical deduction here is devoted to Mathematical modeling. The practical goal is t...") |
|||
Line 1: | Line 1: | ||
This page collects links to materials on reasoning AI. The interpretability, or presence of logical deduction here is devoted to Mathematical modeling. The practical goal is to develop an engineering system that delivers simple mathematical models providing datasets with minimum prior knowledge. | This page collects links to materials on reasoning AI. The interpretability, or presence of logical deduction here is devoted to Mathematical modeling. The practical goal is to develop an engineering system that delivers simple mathematical models providing datasets with minimum prior knowledge. | ||
+ | |||
+ | * Def. interpretability [] | ||
+ | |||
+ | # Links to model generation works | ||
+ | * Optimal spanning tree reconstruction in symbolic regression [https://arxiv.org/abs/2406.18612] | ||
+ | * Additive regularization schedule for neural architecture search [https://arxiv.org/abs/2406.12992] | ||
+ | |||
+ | # Методы структурного обучения для построения прогностических моделей 2012 [http://www.machinelearning.ru/wiki/images/f/f2/Varfolomeeva2013Diploma.pdf thesis], [http://www.machinelearning.ru/wiki/images/a/a3/Varfolomeeva2013Presentation.pdf slides], 2015 [http://www.machinelearning.ru/wiki/images/2/27/Varfolomeeva2015MsThesis.pdf thesis], | ||
+ | [http://www.machinelearning.ru/wiki/images/5/53/Varfolomeeva2015MsPresentation.pdf slides] | ||
+ | # Алгоритмы индуктивного порождения и упрощения 2014 [http://www.machinelearning.ru/wiki/images/0/02/Rudoy2014ModelsSelection.pdf thesis], [http://www.machinelearning.ru/wiki/images/0/0e/Rudoy2014ModelsSelectionSlides.pdf slides], 2012 [https://m1p.org/papers/Rudoy2012Generation_Preprint.pdf paper] | ||
+ | # Порождение экспертно-интерпретируемых моделей петрофизических измерений 2018 [http://www.machinelearning.ru/wiki/images/3/3e/BochkarevPresentation.pdf slides] | ||
+ | # Структурное обучение для генерации моделей 2015 [http://www.machinelearning.ru/wiki/images/6/69/BochkarevArtemMasterThesisText_v3.pdf thesis] [http://www.machinelearning.ru/wiki/images/b/bb/BochkarevArtemMasterThesis_v3.pdf slides] | ||
+ | # Порождение структурно простых ранжирующих функций для задач информационного поиска 2015, 2017 [http://www.machinelearning.ru/wiki/images/9/9e/Kulunchakov2017RankingBySimpleFun.pdf thesis][http://www.machinelearning.ru/wiki/images/f/f4/PresentationKulunchakov2015Ranking.pdf slides] and [https://www.researchgate.net/publication/316806366_Generation_of_simple_structured_Information_Retrieval_functions_by_genetic_algorithm_without_stagnation#fullTextFileContent paper] 2017 | ||
+ | # Выбор иерархических моделей в авторегрессионном прогнозировании, 2013 [http://www.machinelearning.ru/wiki/images/4/40/Fadeev2013MsThesis.pdf thesis], [http://www.machinelearning.ru/wiki/images/4/43/Fadeev2013Presentation.pdf slides] | ||
+ | # 2018 [https://m1p.org/papers/Sologub2014Disser-0018d.pdf thesis], [slides] |
Revision as of 20:28, 16 February 2025
This page collects links to materials on reasoning AI. The interpretability, or presence of logical deduction here is devoted to Mathematical modeling. The practical goal is to develop an engineering system that delivers simple mathematical models providing datasets with minimum prior knowledge.
- Def. interpretability []
- Links to model generation works
- Optimal spanning tree reconstruction in symbolic regression [1]
- Additive regularization schedule for neural architecture search [2]
- Методы структурного обучения для построения прогностических моделей 2012 thesis, slides, 2015 thesis,
- Алгоритмы индуктивного порождения и упрощения 2014 thesis, slides, 2012 paper
- Порождение экспертно-интерпретируемых моделей петрофизических измерений 2018 slides
- Структурное обучение для генерации моделей 2015 thesis slides
- Порождение структурно простых ранжирующих функций для задач информационного поиска 2015, 2017 thesisslides and paper 2017
- Выбор иерархических моделей в авторегрессионном прогнозировании, 2013 thesis, slides
- 2018 thesis, [slides]