Difference between revisions of "Books"
From Research management course
Line 25: | Line 25: | ||
=Russian edition= | =Russian edition= | ||
* [http://www.1variant.ru/content/uchebniki/matematika/650.pdf Лагутин М.Б. Наглядная математическая статистика, 2009] См. также [http://files.lbz.ru/pdf/cC2125-4-ch.pdf вырезку]. | * [http://www.1variant.ru/content/uchebniki/matematika/650.pdf Лагутин М.Б. Наглядная математическая статистика, 2009] См. также [http://files.lbz.ru/pdf/cC2125-4-ch.pdf вырезку]. | ||
− | + | * [https://www.artlebedev.ru/izdal/spravochnik-izdatelya-i-avtora/ Аркадий Мильчин и Людмила Чельцова. Справочник издателя и автора (Редакционно-издательское оформление издания), 2018] |
Revision as of 00:41, 30 December 2020
Contents
Machine learning for beginners
- A Brief Introduction to Machine Learning for Engineers by Osvaldo Simeone, 2017-2018
- Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz, Shai Ben-David, 2014
- Mathematics for Machine learning by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong, 2020
- Mathematics for Physicists: Introductory Concepts and Methods by Alexander Altland & Jan von Delf, 2018
- Bishop C.P. Pattern recognition and machine learning, Berlin: Springer, 2008.
- MackKay D. Information Theory, Pattern Recognition and Neural Networks, Inference.org.uk, 2009.
Linear algebra
- Linear algebra by Jörg Liesen, Volker Mehrmann, 2015
- Linear algebra by Jim Hefferon, 2017
- Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares by Stephen Boyd and Lieven Vandenberghe, 2018