Difference between revisions of "Week 1"
From Research management course
Line 51: | Line 51: | ||
# [https://www.youtube.com/watch?v=vRUYqnas5fo Video for week 0]. | # [https://www.youtube.com/watch?v=vRUYqnas5fo Video for week 0]. | ||
# [http://www.machinelearning.ru/wiki/images/d/dc/M1p_lect1.pdf Slides for week 1]. | # [http://www.machinelearning.ru/wiki/images/d/dc/M1p_lect1.pdf Slides for week 1]. | ||
− | # [Video for week 1]. | + | # [https://www.youtube.com/watch?v=EhgNePTkMkE Video for week 1]. |
# [http://svn.code.sf.net/p/mvr/code/lectures/MLEducation/Strijov2014MLCourseShort.pdf?format=raw Short course description]. | # [http://svn.code.sf.net/p/mvr/code/lectures/MLEducation/Strijov2014MLCourseShort.pdf?format=raw Short course description]. | ||
Revision as of 23:39, 17 February 2021
Set the toolbox
- Editors. Install LaTeX: MikTeX for Windown, TeX Live for Linux, and for Mac OS. Sign up V2 OverLeaf ShareLaTeX.
- Install the editor TeXnic Center or its alternative WinEdt for Windows, TeXworks for Linux, and TeXmakerfor Mac OS.
- Read LaTeX on MachineLearning (Ru).
- Useful: Wikibooks LaTeX, К.В.Воронцов. LaTeX2e в примерах (Ru).
- Editors. Install LaTeX: MikTeX for Windown, TeX Live for Linux, and for Mac OS. Sign up V2 OverLeaf ShareLaTeX.
- Install the editor TeXnic Center or its alternative WinEdt for Windows, TeXworks for Linux, and TeXmakerfor Mac OS.
- Read LaTeX on MachineLearning (Ru).
- Useful: Wikibooks LaTeX, К.В.Воронцов. LaTeX2e в примерах.
- Read Львовский С.М. Набор и верстка в системе LaTeX (Ru).
- Note Мильчин А.Э. Чельцова Л.К. Справочник издателя и автора (Ru).
- Download the paper template, ZIP and compile it.
- References. Read BibTeX.
- Install bibliographic collection software JabRef (can be postponed).
- Communications. Sign up GitHub.
- Important: address and login like Name.Surname or Name-Surname (it depends on system conventions) is welcome.
- Introductory sliders on Version Control System.
- Introduction to GitHub.
- The first steps in GitHub.
- Download a shell: Desktop.GitHub, or use a command line to synchronise your project.
- Sign up MachineLearning.ru. Send your login name to your coordinator or to mlalgorithms [at] gmail [dot] com.
- Create your page example.
- Programming. Install Python Anaconda, PyCharm (alternative Visual Studio), Notebook online Google.Colab.
- Development for ML: PyTorch
- Style formatting: Codestyle pep8
- Add. As alternative install and try Matlab (MIPT provides free version), (alternative Octave), R-project, Wofram Mathematica.
- Add. Read with pleasure Кутателадзе С. С. Советы эпизодическому переводчику and Сосинский А. Б. Как написать математическую статью по-английски (Ru).
Express your project-view
- Write four lines: a goal and motivation (what and why?) for any project you believe worth noting. Refer to Projects.
- If you have subscribe to this course with your own project: please connect your advisor or consultant and write your project description as it shown in the project description template.
- Go to Stepik:
- Sign up to the stepik.org.
- Run the course m1p.
- Put your project description to Step 1.1.
- Participate to the peer-review.
Resources
References to catch up
- A Brief Introduction to Machine Learning for Engineers by Osvaldo Simeone, 2017-2018
- Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz, Shai Ben-David, 2014
- Mathematics for Machine learning by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong
- Mathematics for Physicists: Introductory Concepts and Methods by Alexander Altland & Jan von Delf
- Python notes for professionals by GoalKicker.com Free Programming Books.
- Лагутин М.Б. Наглядная математическая статистика, М.: Бином, 2009. См. также вырезку (Ru)
- Bishop C.P. Pattern recognition and machine learning, Berlin: Springer, 2008
- MackKay D. Information Theory, Pattern Recognition and Neural Networks, Inference.org.uk, 2009