Difference between revisions of "Books"

From Research management course
Jump to: navigation, search
Line 1: Line 1:
=Machine learning for beginners=
+
==Machine learning for beginners==
 
* [https://arxiv.org/pdf/1709.02840 A Brief Introduction to Machine Learning for Engineers by Osvaldo Simeone, 2017-2018]
 
* [https://arxiv.org/pdf/1709.02840 A Brief Introduction to Machine Learning for Engineers by Osvaldo Simeone, 2017-2018]
 
* [https://www.semanticscholar.org/paper/Understanding-Machine-Learning%3A-From-Theory-to-Shalev-Shwartz-Ben-David/ce615ae61d67db8537e981a0a08da7f0f2ff1cee Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz, Shai Ben-David, 2014]
 
* [https://www.semanticscholar.org/paper/Understanding-Machine-Learning%3A-From-Theory-to-Shalev-Shwartz-Ben-David/ce615ae61d67db8537e981a0a08da7f0f2ff1cee Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz, Shai Ben-David, 2014]
Line 8: Line 8:
 
* [https://web.stanford.edu/~hastie/Papers/ESLII.pdf The Elements of Statistical Learning: Data Mining, Inference, and Prediction by Trevor Hastie Robert Tibshirani Jerome Friedman, 2008]
 
* [https://web.stanford.edu/~hastie/Papers/ESLII.pdf The Elements of Statistical Learning: Data Mining, Inference, and Prediction by Trevor Hastie Robert Tibshirani Jerome Friedman, 2008]
  
=Linear algebra=
+
==Linear algebra==
 
*[https://drive.google.com/file/d/16SL9bQYar2ylDzHKNapBIDXCYUZEnRIh/view?fbclid=IwAR3fiuQgDJ0PRxv8o6UslbGx2ICdKxO2Li32FtwPJ_GbjRCXKhxa-BPZw2A Linear algebra by Jörg Liesen, Volker Mehrmann, 2015]
 
*[https://drive.google.com/file/d/16SL9bQYar2ylDzHKNapBIDXCYUZEnRIh/view?fbclid=IwAR3fiuQgDJ0PRxv8o6UslbGx2ICdKxO2Li32FtwPJ_GbjRCXKhxa-BPZw2A Linear algebra by Jörg Liesen, Volker Mehrmann, 2015]
 
*[http://joshua.smcvt.edu/linearalgebra Linear algebra by Jim Hefferon, 2017]
 
*[http://joshua.smcvt.edu/linearalgebra Linear algebra by Jim Hefferon, 2017]
 
*[https://web.stanford.edu/~boyd/vmls/?fbclid=IwAR08VCHfJ1hVAvuVBW6G59CZZ9EWzAlm0yKnID82DP9G2YbmugzsYIQQ4W0 Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares by Stephen Boyd and Lieven Vandenberghe, 2018]
 
*[https://web.stanford.edu/~boyd/vmls/?fbclid=IwAR08VCHfJ1hVAvuVBW6G59CZZ9EWzAlm0yKnID82DP9G2YbmugzsYIQQ4W0 Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares by Stephen Boyd and Lieven Vandenberghe, 2018]
  
=Optimization=
+
==Optimization==
 
* [https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf Convex Optimization by Stephen Boyd and Lieven Vandenberghe, 2009]
 
* [https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf Convex Optimization by Stephen Boyd and Lieven Vandenberghe, 2009]
 
* [https://archive.siam.org/books/textbooks/fr18_book.pdf Iterative Methods for Optimization by C.T.Kelley, 1999]
 
* [https://archive.siam.org/books/textbooks/fr18_book.pdf Iterative Methods for Optimization by C.T.Kelley, 1999]
  
=Basics of probability and statistics=
+
==Basics of probability and statistics==
 
* A first course in probability by Sheldon M. Ross, 2012
 
* A first course in probability by Sheldon M. Ross, 2012
 
* Elements of information theory by Thomas M. Cover, Joy A. Thomas, 2006
 
* Elements of information theory by Thomas M. Cover, Joy A. Thomas, 2006
Line 25: Line 25:
 
* Linear Models and Generalizations: Least Squares and Alternatives by C. Radhakrishna Rao et al., 2007
 
* Linear Models and Generalizations: Least Squares and Alternatives by C. Radhakrishna Rao et al., 2007
  
=Bayesian statistics and inference=
+
==Bayesian statistics and inference==
 
* [http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf Bayesian reasoning and machine learning by David Barber, 2014]
 
* [http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf Bayesian reasoning and machine learning by David Barber, 2014]
 
* Probabilistic graphical models by Daphne Koller and Nir Friedman, 2009
 
* Probabilistic graphical models by Daphne Koller and Nir Friedman, 2009
Line 31: Line 31:
 
* Bayesian data analysis by Andrew Gelman et al., 2013
 
* Bayesian data analysis by Andrew Gelman et al., 2013
  
=Functional data analysis=
+
==Functional data analysis==
 
* Sequences and series in banach spaces by J. Diestel, 1984
 
* Sequences and series in banach spaces by J. Diestel, 1984
 
* Functional data analysis by J.O. Ramsay and B.W. Silverman, 2005  
 
* Functional data analysis by J.O. Ramsay and B.W. Silverman, 2005  
Line 46: Line 46:
 
* [https://d2l.ai/ Dive into Deep Learning by  Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola, 2020]
 
* [https://d2l.ai/ Dive into Deep Learning by  Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola, 2020]
  
=Russian edition=
+
==Russian edition==
 
* [http://www.1variant.ru/content/uchebniki/matematika/650.pdf Лагутин М.Б. Наглядная математическая статистика, 2009] (cм. также [http://files.lbz.ru/pdf/cC2125-4-ch.pdf вырезку])
 
* [http://www.1variant.ru/content/uchebniki/matematika/650.pdf Лагутин М.Б. Наглядная математическая статистика, 2009] (cм. также [http://files.lbz.ru/pdf/cC2125-4-ch.pdf вырезку])
 
* [https://www.artlebedev.ru/izdal/spravochnik-izdatelya-i-avtora/ Аркадий Мильчин и Людмила Чельцова. Справочник издателя и автора (Редакционно-издательское оформление издания), 2018]
 
* [https://www.artlebedev.ru/izdal/spravochnik-izdatelya-i-avtora/ Аркадий Мильчин и Людмила Чельцова. Справочник издателя и автора (Редакционно-издательское оформление издания), 2018]

Revision as of 23:40, 5 April 2021

Machine learning for beginners

Linear algebra

Optimization

Basics of probability and statistics

  • A first course in probability by Sheldon M. Ross, 2012
  • Elements of information theory by Thomas M. Cover, Joy A. Thomas, 2006
  • Probability theory by Alexandr A. Borovkov, 2006
  • Mathematical statistics by Alexandr A. Borovkov, 1999
  • Linear Statistical Inference & Its Applications by C. Radhakrishna Rao, 1967
  • Linear Models and Generalizations: Least Squares and Alternatives by C. Radhakrishna Rao et al., 2007

Bayesian statistics and inference

Functional data analysis

Discrete analysis

  • Lectures on discrete geometry by Jiří Matoušek, 2002
  • Indiscrete thoughts by Gian-Carlo Rota, 2008
  • Graph theory by Reinhard Diestel, 2017
  • Graph theory (groups and symmetries: from finite groups to Lie groups) by Reinhard Diestel, 2000

Programming

Russian edition