Functional data analysis for BCI and biomedical signals
Vadim, 2023
Brain-computer interfaces require a sophisticated forecasting model. This model fits heterogeneous data. The signals come from ECoG, ECG, fMRI, hand and eye movements, and audio-video sources. The model must reveal hidden dependencies in these signals and establish relations between brain signals and limb motions. My research focuses on the constriction of BCI forecasting models. The main challenges of the research are phase space construction, dimensionality reduction, manifold learning, heterogeneous modeling, and knowledge transfer. Since the measured data are stochastic and contain errors, I actively use and develop Bayesian model selection methods. These methods infer criteria to optimize model structure and parameters. They aim to select an accurate and robust BCI model.
Contents
Brain signals and dimensionality reduction
Intracranial electroencephalography (iEEG) signals are tensors or time-related tensor fields. They have several indexes for physical space, time, and frequency. The multi-index structure of time series causes redundancy of space features and multi-correlation. It turns out to increase the complexity of the model and obtain unstable forecasts. I address the dimensionality reduction problem for high-dimensional data. The essential methods are tensor decomposition and high-order singular value decomposition. To reveal hidden dependencies in data, we proposed a feature selection method. It minimizes multi-correlation in the source space and maximizes the relation between source and target spaces. This solution shrinks the number of model parameters tenfold and stabilizes the forecast. To boost the quality of approximation I plan to investigate dimensionality reduction for nonlinear models in discrete time: the stacks of autoencoders and recurrent neural networks, and in the continuous time: the neural ODEs.