Teaching Philosophy
I aim to show the power of mathematical methods in the practical application of Machine Learning and to show Machine Learning scientific research principles to graduate and undergraduate students. I join students, their senior mates, and experienced researchers in productive research groups.
Contents
Practice: My first scientific paper
I plan to continue and expand my course, "My First Scientific Paper." The goal of the course is to introduce students to the technologies of scientific research. The course teaches how to plan, perform, and present research results. It provides formats acknowledged by other researchers. Each student works with an advisor and a consultant to learn how to formally state research problems, find adequate references, and generate novel and significant ideas for problem-solving. The expected outcome of the course is a research paper submitted to a peer-reviewed journal.
The course has been successfully delivered during the last eight years. Each year 15-30 students perform their research projects. Each project ends with a scientific paper, a code, a presentation, and a video. The course has a repository with over 500 projects and its YouTube channel. I believe this course contributes to educational science and citizen science.
Mathematical forecasting
I am delivering lectures on Statistics and Machine Learning. My specialization is Mathematical forecasting. I present a new view of this field of knowledge: the forecasting problems deal not with the vector spaces but with the vector fields. The main subject is vector and tensor fields over time and space. The modeling data are spatial-time series. It is video and audio streams, brain signals and images, biomedical live measurements, wearable device sensor signals, and other signals in biology and physics. The practical applications for study and labwork are brain-computer interface, human motion, and human health monitoring. The course is organized into eight sections: autoregressive models, tensor decomposition, canonic correlation analysis, continuous-time analysis, dynamic systems, spatial-time alignment, metrics learning, and diffusion-graphical models. Each section runs labwork with various practical applications in Python.
Theoretical foundations
To support study and labwork in practical applications, I am planning to deliver lecture courses on Geometric Deep Learning, Differential Geometry for Data Analysis, Functional Data Analysis, and Bayesian Model Selection.
Organisational activities
I plan to continue working with Ph.D. students to produce high-quality applied and theoretical research papers and theses. I have experience serving as an editor of a scientific journal and a member of defense committees, so I gladly continue these activities.