Singular Value Decomposition, briefly

In a nutshell, the SVD is very simple. There is a matrix A. In the case of the indices computation it is a table of object-feature measure data. The objects corresponds to rows while the features corresponds to columns. Also, the matrix A is a linear operator. It maps a weights vector \mathbf{w} in the weights space \mathbb{R}^m to an indices vector \mathbf{q} in the indices space \mathbb{R}^n . Here m is the number of objects and n is the number of features. A linear operator A can be represented as the product of three linear operators, $A = U\Lambda V^T$. The matrix U and V are orthogonal and the matrix Λ is diagonal. So, an arbitrary linear operator A could be represented as the product of a rotation, scaling and rotation linear operators. This quality of the SVD will be used in the indices computation algorithm. Below we will discuss the SVD in detail.

An arbitrary matrix $A = \{a_{ij}\}$ can be described as

$$a_{ij} = \sum_{k=1}^{r} u_{ik} \lambda_k v_{kj} + c_{ij}, \tag{1}$$

where i = 1, ..., m u j = 1, ..., n. Values of u_{kj}, λ_k and v_{jk} for given k one can obtain from the minimum of ε_n^2 , where

$$\varepsilon_n^2 = \sum_{i=1}^m \sum_{j=1}^n c_{ij}^2,\tag{2}$$

with conditions of the normalization

$$\sum_{i=1}^{n} u_{kj}^{2} = \sum_{i=1}^{m} v_{ik}^{2} = 1 \tag{3}$$

and the order $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_r \geq ... \geq 0$.

Rewrite (1), (2) and (3) in matrix notations:

$$A = U\Lambda V^T + C,$$

$$\varepsilon^2 = \operatorname{tr}(CC^T) = ||C||^2,$$

$$U^T U = VV^T = \mathbf{1},$$

where $U = \{u_{kj}\}, \Lambda = \{\lambda_k\}, V = \{v_{ik}\}$. If the value of r is large enough then $C = \mathbf{0}$. This condition will held if $r \ge \min\{m, n\}$. The minimal value of r, for which the condition $A = U\Lambda V^T$ is fair, is equal to rank of the matrix A. Forsythe, G.E. and Moler, C.B. proofed the next theorem.

For any real-valued $(n \times n)$ -matrix A there are two real-valued orthogonal $(n \times n)$ -matrices U and V such that U^TAV is the diagonal matrix Λ . The matrices U and V can be organized such that the diagonal elements of Λ have the order

$$\lambda_1 > \lambda_2 > \dots > \lambda_r > \lambda_{r+1} = \dots = \lambda_n = 0,$$

where r - is the rank of A. Particularly, if A is non-degenerate then

$$\lambda_1 > \lambda_2 > \dots > \lambda_n > 0.$$

The minimization of (2) with the condition (3) is the problem of a two-variable function $\zeta(x,y)$ approximation with a sum of two pair-wise multiplications $\sum_i \alpha_i(x)\beta_i(y)$ of one-variable functions $\alpha_i(x)$ and $\beta_i(y)$. Below we describe a quadratic algorithm to solve this problem.

Find one, then the other the vectors $\mathbf{u}_k, \mathbf{v}_k$ and the singular values λ_k for k = 1, ..., r. В качестве этих векторов берутся нормированные значения векторов The normalized vectors \mathbf{a}_k and \mathbf{b}_k are needed to find $\mathbf{u}_k, \mathbf{v}_k$: $\mathbf{u}_k = \frac{\mathbf{a}_k}{\|\mathbf{a}_k\|}, \mathbf{v}_k = \frac{\mathbf{b}_k}{\|\mathbf{b}_k\|}$. The vectors \mathbf{a}_k и \mathbf{b}_k are found as limits of vector series $\{\mathbf{a}_{k_i}\}$ и $\{\mathbf{b}_{k_i}\}$, respectively $\mathbf{a}_k = \lim(\mathbf{a}_{k_i})$ и $\mathbf{b}_k = \lim(\mathbf{b}_{k_i})$. The singular value λ_k can be found as the multiplication of the norm of the vectors: $\lambda_k = \|\mathbf{a}_k\| \cdot \|\mathbf{b}_k\|$.

The vector $\mathbf{u}_k, \mathbf{v}_k$ searching procedure begins from the choice of the line \mathbf{b}_{1_1} of the matrix A which norm is maximal. For k=1 formulas of the vectors \mathbf{a}_{1_i} and \mathbf{b}_{1_1} are:

$$\mathbf{a}_{1_i} = \frac{A\mathbf{b}_{1_i}^T}{\mathbf{b}_{1_i}\mathbf{b}_{1_i}^T}, \quad \mathbf{b}_{1_{i+1}} = \frac{\mathbf{a}_{1_i}^TA}{\mathbf{a}_{1_i}^T\mathbf{a}_{1_i}}, \quad i = 1, 2, \dots$$

To compute $\mathbf{u}_k, \mathbf{v}_k$ where k = 2, ..., r the formulas above are used. However, the matrix A should be replaced with corrected on the k-th step matrix $A_{k+1} = A_k - \mathbf{u}_k \lambda_k \mathbf{v}_k$.

Notice the next feature if the Singular Values Decomposituin. Since the matrices U and V are orthogonal, i.e.

$$U^T U = V V^T = I, (4)$$

where I is a $r \times r$ identity matrix, then from (4) one can show that

$$AA^{T} = U\Lambda V V^{T} \Lambda U^{T} = U\Lambda^{2} U^{T},$$

$$A^{T}A = V^{T} \Lambda U^{T} U\Lambda V = V^{T} \Lambda^{2} V.$$
(5)

If one multiply both parts of this equations from the right to U and V^T than

$$AA^{T}U = U\Lambda^{2},$$

$$A^{T}AV^{T} = V^{T}\Lambda^{2}.$$
(6)

From (6) it follows that the matrix U rows are the eigenvectors of the matrix AA^T , while the squares of the singular values $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_r)$ are its eigenvalues (Wilkinson, J.H.). Also the matrix V lines are eigenvectors of the matrix A^TA while the squares of the singular values are is eigenvalues.

FOR FURTHER READING

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9.

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins University Press), \S 8.3 and Chapter 12.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Computation (New York: Springer-Verlag), Chapter I.10 by G.H. Golub and C. Reinsch.