
Singular Value Decomposition, briefly

In a nutshell, the SVD is very simple. There is a matrix A. In the case of the indices
computation it is a table of object-feature measure data. The objects corresponds to rows
while the features corresponds to columns. Also, the matrix A is a linear operator. It maps
a weights vector w in the weights space Rm to an indices vector q in the indices space Rn.
Here m is the number of objects and n is the number of features. A linear operator A can
be represented as the product of three linear operators, A = UΛV T . The matrix U and V
are orthogonal and the matrix Λ is diagonal. So, an arbitrary linear operator A could be
represented as the product of a rotation, scaling and rotation linear operators. This quality
of the SVD will be used in the indices computation algorithm. Below we will discuss the
SVD in detail.

An arbitrary matrix A = {aij} can be described as

aij =
r∑

k=1

uikλkvkj + cij, (1)

where i = 1, ..., m и j = 1, ..., n. Values of ukj, λk and vjk for given k one can obtain from
the minimum of ε2

n, where

ε2
n =

m∑
i=1

n∑
j=1

c2
ij, (2)

with conditions of the normalization
n∑

j=1

u2
kj =

m∑
i=1

v2
ik = 1 (3)

and the order λ1 ≥ λ2 ≥ ... ≥ λr ≥ ... ≥ 0.
Rewrite (1), (2) and (3) in matrix notations:

A = UΛV T + C,
ε2 = tr(CCT ) = ‖C‖2,
UT U = V V T = 1,

where U = {ukj}, Λ = {λk}, V = {vik}. If the value of r is large enough then C = 0. This
condition will held if r ≥ min{m,n}. The minimal value of r, for which the condition A =
UΛV T is fair, is equal to rank of the matrix A. Forsythe, G.E. and Moler, C.B. proofed
the next theorem.

For any real-valued (n × n)-matrix A there are two real-valued orthogonal (n × n)-
matrices U and V such that UT AV is the diagonal matrix Λ. The matrices U and V can
be organized such that the diagonal elements of Λ have the order

λ1 ≥ λ2 ≥ ... ≥ λr > λr+1 = ... = λn = 0,

where r — is the rank of A. Particularly, if A is non-degenerate then
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λ1 ≥ λ2 ≥ ... ≥ λn > 0.

The minimization of (2) with the condition (3) is the problem of a two-variable function
ζ(x, y) approximation with a sum of two pair-wise multiplications

∑
i αi(x)βi(y) of one-

variable functions αi(x) and βi(y). Below we describe a quadratic algorithm to solve this
problem.

Find one, then the other the vectors uk,vk and the singular values λk for k = 1, ..., r.
В качестве этих векторов берутся нормированные значения векторов The normalized
vectors ak and bk are needed to find uk,vk: uk = ak

‖ak‖ , vk = bk

‖bk‖ . The vectors ak и bk are
found as limits of vector series {aki

} и {bki
}, respectively ak = lim(aki

) и bk = lim(bki
).

The singular value λk can be found as the multiplication of the norm of the vectors:
λk = ‖ak‖ · ‖bk‖.

The vector uk,vk searching procedure begins from the choice of the line b11 of the
matix A which norm is maximal. For k = 1 formulas of the vectors a1i

and b1i
are:

a1i
=

AbT
1i

b1i
bT

1i

, b1i+1
=

aT
1i
A

aT
1i
a1i

, i = 1, 2, ...

To compute uk,vk where k = 2, ..., r the formulas above are used. However, the matrix A
should be replaced with corrected on the k-th step matix Ak+1 = Ak − ukλkvk.

Notice the next feature if the Singular Values Decomposituin. Since the matrices U
and V are orthogonal, i.e.

UT U = V V T = I, (4)

where I is a r × r identity matrix, then from (4) one can show that

AAT = UΛV V T ΛUT = UΛ2UT ,
AT A = V T ΛUT UΛV = V T Λ2V.

(5)

If one multiply both parts of this equations from the right to U and V T than

AAT U = UΛ2,
AT AV T = V T Λ2.

(6)

From (6) it follows that the matrix U rows are the eigenvectors of the matrix AAT , while
the squares of the singular values Λ = diag(λ1, ..., λr) are its eigenvalues (Wilkinson, J.H.).
Also the matrix V lines are eigenvectors of the matrix AT A while the squares of the singular
values are is eigenvalues.
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