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1 Fixed-Period Problems: The Sublinear Case

With this chapter, the preliminaries are over, and we begin the search for periodic
solutions to Hamiltonian systems. All this will be done in the convex case; that
is, we shall study the boundary-value problem

&= JH'(t,z)
z(0) = =(T)

with H(t,-) a convex function of x, going to +o0o when ||z| — oco.

1.1 Autonomous Systems

In this section, we will consider the case when the Hamiltonian H(z) is au-
tonomous. For the sake of simplicity, we shall also assume that it is C*.

We shall first consider the question of nontriviality, within the general frame-
work of (A, Bxo )-subquadratic Hamiltonians. In the second subsection, we shall
look into the special case when H is (0, by )-subquadratic, and we shall try to
derive additional information.

The General Case: Nontriviality. We assume that H is (As, Boo)-sSub-
quadratic at infinity, for some constant symmetric matrices Ao, and By, with
By — A positive definite. Set:

v : = smallest eigenvalue of By — Aso (1)

d
A : = largest negative eigenvalue of J pn +As . (2)
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Theorem 1 tells us that if A + v < 0, the boundary-value problem:

&= JH' (z)
2(0) = #(T) (3)

has at least one solution T, which is found by minimizing the dual action func-
tional:

P(u) = /OT [% (A;lu,u) + N*(—u)| dt (4)
on the range of A, which is a subspace R(A)% with finite codimension. Here
N(@) i= H(@) = 5 (A, 2) o)
is a convex function, and
N(z) < %((Boo _Au)z,@)te Vo (6)

Proposition 1. Assume H'(0) =0 and H(0) = 0. Set:

§ := liminf 2N (z) ||z|| > . (7)
z—0
If v < =X < 4, the solution T is non-zero:
T(t) £0 Vi. (8)
Proof. Condition (7) means that, for every 6’ > ¢, there is some £ > 0 such that
o2

lzll < €= N(z) < 5 ll=[I” - (9)

It is an exercise in convex analysis, into which we shall not go, to show that
this implies that there is an n > 0 such that

) 1
Fllall <0 = N*() < 5 lll” - (10)

Fig. 1. This is the caption of the figure displaying a white eagle and a white horse on
a snow field
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Since u; is a smooth function, we will have ||hu;||,, < n for h small enough,
and inequality (10) will hold, yielding thereby:
h? 1
2 ¢

h?1

2 2
o a3+ 5 5 (11)

Y(hu) <

If we choose ¢’ close enough to §, the quantity (% + %) will be negative, and
we end up with

P(hu1) <0  for h#0 small. (12)
On the other hand, we check directly that ¥(0) = 0. This shows that 0 cannot
be a minimizer of ), not even a local one. So u # 0 and u # A;*(0) = 0. O

Corollary 1. Assume H is C? and (aoo,boo)-subquadratic at infinity. Let &1,
.., &N be the equilibria, that is, the solutions of H'(£) = 0. Denote by wy the
smallest eigenvalue of H"” (&), and set:

w:=Min {wy,...,wi} . (13)

If:
T T T
Z b < —F |——aw — 14
2m < { 27Ta } < 27Tw (14)
then minimization of ¥ yields a non-constant T-periodic solution T.
We recall once more that by the integer part E[a] of a € IR, we mean the

a € Z such that a < a < a + 1. For instance, if we take ao, = 0, Corollary 2
tells us that T exists and is non-constant provided that:

T T
— b <1< — 15
2 <ts 2 ( )
or or 9
T 27w
T — — ] . 16
€ ( w’ boo> (16)

Proof. The spectrum of A is %Z + Goo. The largest negative eigenvalue A is
given by %ko + a0, Where

2 2
Tk0+aoo<0_T(ko+l)+aoo (17)

Hence: T
ko =F|——ax| . 18
= (18)

The condition v < —A < § now becomes:
2

boo—aoo<—T7Tl€0—aoo<w—aOO (19)

which is precisely condition (14). O
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Lemma 1. Assume that H is C? on TR**\ {0} and that H" (x) is non-degenerate

for any x # 0. Then any local minimizer T of ¥ has minimal period T .

Proof. We know that Z, or Z + £ for some constant & € IR*", is a T-periodic
solution of the Hamiltonian system:

&= JH'(z) . (20)

There is no loss of generality in taking £ = 0. So ¥(z) > () for all  in
some neighbourhood of = in W2 (R/TZ;IR*").

But this index is precisely the index i7(Z) of the T-periodic solution Z over
the interval (0,7"), as defined in Sect. 2.6. So

ir(z)=0. (21)

Now if T has a lower period, T'/k say, we would have, by Corollary 31:
ir(2) = ikr/(T) 2 kiry(Z) +k-1>2k-1>1. (22)
This would contradict (21), and thus cannot happen. a

Notes and Comments. The results in this section are a refined version of [1]; the
minimality result of Proposition 14 was the first of its kind.

To understand the nontriviality conditions, such as the one in formula (16),
one may think of a one-parameter family z, T € (27w ™1, 27b2 ) of periodic
solutions, z7(0) = 27 (T), with o7 going away to infinity when T — 27w™!,
which is the period of the linearized system at 0.

Table 1. This is the example table taken out of The TgXbook, p.246

Year World population

8000 B.C. 5,000,000

50 A.D. 200,000,000
1650 A.D. 500,000,000
1945 A.D.  2,300,000,000
1980 A.D. 4,400,000,000

Theorem 1 (Ghoussoub-Preiss). Assume H(t,x) is (0,¢)-subquadratic at
infinity for all € > 0, and T-periodic in t

H(t,-) is convex Vt (23)

H(-,x) is T—periodic Vz (24)
H(t,z) > n(||z|) with n(s)s™! =00 as s— oo (25)
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YVe>0, 3c: H(t,:v)ﬁ%H:EHQ—i—c. (26)

Assume also that H is C?, and H" (t,z) is positive definite everywhere. Then
there is a sequence xy, k € IN, of kT -periodic solutions of the system

= JH'(t,x) (27)
such that, for every k € IN, there is some p, € IN with:
P> Po = Tpk # Tj . (28)
O
Ezample 1 (External forcing). Consider the system:
&= JH' (z)+ f(t) (29)

where the Hamiltonian H is (0, b )-subquadratic, and the forcing term is a
distribution on the circle:

f= %F +f, with FeL*(R/TZ;R*™) , (30)

where f, :=T71! fOT f(t)dt. For instance,

F6) =" ¢, (31)

keIN

where 0 is the Dirac mass at t = k and & € IR*" is a constant, fits the pre-
scription. This means that the system @ = JH'(x) is being excited by a series
of identical shocks at interval T'.

Definition 1. Let Ao, (t) and Boo(t) be symmetric operators in R*™, depending
continuously on t € [0,T], such that A (t) < Boo(t) for all t.

A Borelian function H : [0,T] x R*™ = IR is called (Aso, Boo)-subquadratic
at infinity if there exists a function N (t,z) such that:

1

H(t,z) = 3 (A (t)z,2) + N(t, 2) (32)

Vt, N(t,x) is convex with respect to x (33)

N(t,xz) = n(||z|) with n(s)s™" — +oo0 as s — 400 (34)
1

JeelR : H(t,z) < B (Boo(t)z,2) + ¢ V. (35)

If Aso(t) = aool and Boo(t) = bool, with ax < bs € R, we shall say that
H is (@00, boo ) -subquadratic at infinity. As an ezample, the function ||z||*, with
1 < a < 2, is (0,¢)-subquadratic at infinity for every e > 0. Similarly, the
Hamiltonian

1 a
H(t,z) = §7<f||/€|\2 + =l (36)

is (k, k + €)-subquadratic for every € > 0. Note that, if k <0, it is not convez.
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Notes and Comments. The first results on subharmonics were obtained by Ra-
binowitz in [5], who showed the existence of infinitely many subharmonics both
in the subquadratic and superquadratic case, with suitable growth conditions
on H’. Again the duality approach enabled Clarke and Ekeland in [2] to treat
the same problem in the convex-subquadratic case, with growth conditions on
H only.

Recently, Michalek and Tarantello (see [3] and [4]) have obtained lower bound
on the number of subharmonics of period k7', based on symmetry considerations
and on pinching estimates, as in Sect. 5.2 of this article.
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