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Dimensionality reduction and 
index construction problem

There is a set of objects, i.e. power plants:
Beckjord
East Bend
Miami Fort
Zimmer

The index is a measure of an object’s quality. 
It is a scalar, corresponded to an object.

Expert estimation of an object’s quality 
could be an index, too.
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Examples

LinearGreenhouse 
gases

Power plantsKyoto-index

By an expert 
commission

RequirementsBanksBank ratings

Non-linearShares (prices, 
volumes)

Time ticks S&P500, 
NASDAQ

Linear (weighted 
sum)

Televotes, Jury 
votes

SingersEurovision

Sum of scoresTestsStudents TOEFL

ModelFeaturesObjectsIndex name
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There are lots of ways to construct indices. However, when algorithms are 
chosen and some results obtained, the following question arises:

How to show adequacy of the 
calculated indices?

To answer the question analysts invite experts. The experts express their 
opinion and then the second question arises:

How to show that expert estimations 
are valid?
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How to construct an index?
Assign a comparison criterion. 

Gather a set of comparable objects.
Gather features of the objects.

Make a data table: objects/features, i.e.

# Plant Name
Plant 
Type

Total Net 
Generation C
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10^6 KWHours
Short tons per 

month

Short tons per 

month

Short tons per 

month
Qty per sq.mile

1 Beckjord Coal 458505 191 16 45 23
3 East Bend Coal 356124 147 16 43 34
4 Miami Fort Coal 484590 204 6 23 45
5 Dark Creek Coal 818435 329 5 64 34

max min min min minOptimal value

The criterion could be: Ecological footprint of a plant
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Notations

A={aij} – (n x m) real matrix, data set,
q =[q1, …, qm]T – vector of object indices,
w=[w1, …, wn]T – vector of 

feature importance weights,
q0, w0 – expert estimations of indices and weights.

Usually, data prepared so that 
1. the minimum of each feature equals 0, while the maximum equals 1;
2. the bigger value of each implies better quality of the index.
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The first method, Pareto slicing
An easiest method to obtain indices in ordinal scales is to 

find non-dominated objects at each slicing level.

feature1

feature2

obj3
obj1

obj2

obj4

obj5obj6

IIIIII

ij ib a≥
The object a is non-dominated if there is no bi

such that                 for all features j.

a
b
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Supervised way-1, 
the Weighted sum

q1 = A w0.

amn…am1qm

…………

a1n…a11q1

wn…w1
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Unsupervised way, 
Principal Components Analysis
Q=AW, where W—rotation matrix of the principal 

components. 
qPCA=Aw1PC, where w1PC is the 1st column vector of W.

feature1

feature2

q3

q1

q2

q4

q5

q6
q7

obj5

obj6

obj3

obj4

obj1

obj2obj7

PCA gives minimal mean square error between objects and their projections.

1PC

2PC
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Unsupervised way, 
useful tool for PCA 

TA ULW=
T T TA A WLU ULW=

2TA AW WL=
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Supervised way-2, 
the Expert-Statistical Technique

w1 = arg min ||q0– A w||2, 

least squares,  w1=(ATA) -1ATq0.
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The problem of specification
We have

the data table  A,
expert estimations q0, w0,
calculated weights and indices q1, w1.

Contradiction

Calculated indices are not the same as the expert 
estimations for the indices;

as well, calculated weights are not the same as the 
expert estimations of the weights:

in general, 
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wα = αA+q0+ (1-α)w0, qα = (1-α)Aw0+ αq0.

Linear specification

w1

Parameter α is in [0,1].
α = 0, we trust expert estimations of the weights,
α = 1, we trust expert estimations of the indices.

w2

q1

q2

w0

w1

wα

q0

q1

qα

A+

A
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Quadratic specification

2
0δ 2 = −w w

w1

If parameter γ2 is 0, then we trust expert estimations of the indices.

w2

q1

q2

w0

wα

q0

qαA+

A

2
0Aε 2 = −w q

),(minarg 222 δγεγ −=
∈Ww

w ).()( 0
2

0
12 wqw γγγ ++= − TT AIAA
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Comparison of the methods,
what is the difference?
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Ordinal specification

w1

w2

q1

q2

w0
q0

q1

A qr

0 1 2 0 1 2[ ... 0] , [ ... 0] .T T
n mw w w q q q= ≥ ≥ ≥ ≥ = ≥ ≥ ≥ ≥w q
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Rank-scaled expert estimations

1 1 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1

J
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The cones intersection exists

1 0 0 ,AW Q∈q I

2
0

2
0

2

, 1
, 1

', ' arg min .
W
Q

A
∈ =
∈ =

= −
w w
q q

w q w q

where

or not, then specify

(1 ) ' ',Aα α α= − +q w q
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Check the expert!

Pair-wise comparison

If an object in a row is better than the other one in a column then put “+”, 
otherwise “-”.

Make a graph, row + column means row column.
Find the top and remove extra nodes.

soup
porridge

apple

ice-cream

a     s    p     i-c apple soup

porridge ice-cream

apple

soup
porridge

ice-
cream

IV

III

II

I



19

The results of the specification are

adequate indices,
reasoned expert estimations.

We know why our expert valued each object
and what contribution each feature makes to the index. 
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Model selection for (generalized) linear models

Let there be given
1. Sample set:
{(xi , yi )|i = 1, . . . , `}, where xi ∈ R

P , yi ∈ R
1, P = |N|

and N ⊂ N.

s
2. Linear model:

y = f (w, x) + ε,

y = 〈w, x〉 + ε.

3. Data generation hypothesis:
distribution of the random variable εi is in the exponential family.
4. Target function:
minimum of the residual vector norm

SSE =
∑̀

i=1

(〈w, xi 〉 − yi )
2 → min .
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One must to

find a subset A ⊂ N of the indices x̂ = {x j
i |j ∈ A}, such that the

model f (w, x̂) brings the optimum to the given criterion.

For example to the Colin Mallows’ CP :

CP =
SSEP

RMS
− ` + 2P,

where

RMS =
1

`

∑̀

i=1

(yi − f (w, xi ))
2.

Or to another criterion from the following list.
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Criterions for model selection

1 Information criterions

Akaike Information Criterion, AIC = 2P − 2 ln(S)
Bayesian Information Criterion, BIC = P ln(`) − 2 ln(S)

2 Cross-validation

Retrospective Forecasting

Leave One Out

Random Split, etc.

3 Model Comparison

Bayesian Comparison

Minimum Description Length
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Superposition construction

Let there be given

Ξ = {ξu}U
u=1 — set of measured (nongenerated) independent

variables,

G = id ∪ {gv}
V
v=2 — finite set of primitive functions.

Consider Cartesian product G ×Ξ. An element (gv , ξu) corresponds
to the superposition gv (ξu) and defined by indices v , u.
Denote sι = gv (ξu), where the index ι = (v − 1)U + u.

Consider S × S × . . . × S — Cartesian product N of the sets
S = {sι}. Each element of N bijectively corresponds to the
superposition ai = s1

ι ◦ s2
ι ◦ . . . ◦ sNι .
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Kolmogorov-Gabor polynomial

The basic model of the feature generation is

y = w0 +
UV∑

i=1

wiai +
UV∑

i=1

UV∑

j=1

wijaiaj + · · ·+
UV∑

i=1

. . .
UV∑

z=1

wi ...zai . . . az ,

where the coefficients

w = (w0, wi , wij , . . . , wi ...z)i ,j ,...,z=1,...,UV .

Represent this series as

y =
∑

j∈N

wjx
j .

The variables {x j} bijectively correspond to monomials of the
polynomial.
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The model selection algorithms

Exhaustive search and modifications

1 Exhaustive search of 2P models

2 Method of group data handling, K · C 2
P models

3 Genetic algorithms

4 Add (append a feature), P(P − 1)/2 models

5 Del (eliminate a feature)

6 Add-del or stepwise regression, ∼ P2 models

Parameter space analysis

1 Least angle regression (LARS), Lasso

2 Optimal brain surgery
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Exhaustive search algorithm

The basic linear model includes all independent variables

y = w0 + α1w1x1 + α2w2x2 + . . . + αRwPxP .

The hyperparameter α ∈ {0, 1} is included for the model. The
exhaustive search

α1 α2 . . . αP

1 0 . . . 0
0 1 . . . 0

. . . . . . . . . . . .
1 1 . . . 1

.
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Add (append a feature)

Step 0.
The active set A0 = ∅, and N is the set if feature indices, P = |N|.
Step k = 1, . . . , P.
Select the next best feature index

ĵ = arg min
j∈P\Ak

min
w∈Wk

‖(XAk

...xj)w − y‖2
2,

then
Ak+1 = Ak ∪ ĵ .
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Assume the following

The column vectors

xj = {x j
i |i ∈ 1, . . . , `} and y = {yi |i ∈ 1, . . . , `}.

The model
y = w1x

j + . . . + wPxP + ε,

in the other words,
y = Xw + ε.

Assume for all j ∈ N

‖xj‖1 = 0, ‖xj‖2 = 1 and ‖y‖1 = 0, ‖y‖2 = 1.

For all j , k ∈ N, j 6= k the vectors xj , xk are linear independent.
Then the vector of correlation coefficients

c = XTy.
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Fast orthogonal search

Step 0.
The residuals ε0 = 0, the active set A0 = ∅.

Step k = 1, . . . , P.

Ak = Ak−1 ∪ ĵ ,

where ĵ — feature, which has maximum correlation with εk :

ĵ = arg max
j∈{N\Ak}

〈w, xj〉

‖x‖‖εk‖
,

and
εk = XAwA − εk−1.
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Fast orthogonal search
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Least angle regression, LARS

Denote µ = Xw.

Step 0.
µ0 = 0, residual vector ε0 = y − µ0.

Step 1.
Let y has greater correlation with x1 than with x2. Then the new
value of µ1 = µ0 + w1x

1, where w1 is chosen so, that the vector
y2 − µ — is a bisector for the vectors x1, x2.

Step 2.
For the unit bisector u2 calculate w2:

µ2 = µ1 + w2u2 = y2 for P=2.
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Least angle regression, LARS
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Lasso

Minimize the error
‖Xw − y‖2

2 → min,

subject to ∑

j∈N

‖wj‖1 6 T .

Theorem (Efron et al., 2004).
Assuming the «one at time» condition, the LARS algorithm yields
all Lasso solutions.
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Lasso and LARS
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Optimal brain surgery

Approximate SSE = S(w):
S(w + ∆w) = S(w) + gT (w)∆w + 1

2∆wTH∆w + o(‖w‖3).

Elimination a feature is equivalent to eT
i ∆w + wi = 0.

Minimize the quadratic form ∆wTH∆w subject
to eT

i + wi = 0, for all i .

The index of the eliminated feature
is i = arg mini (min∆w(∆wTH∆w|eT

i + wi = 0)).

Introduce Lagrange function S = ∆wTH∆w − λ(eT
i + wi ).

For all i ∆w = − wi

[H−1]ii
H−1ei .

The salience of the target function is Li =
w2

i

2[H−1]ii
.
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Optimal brain surgery
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Optimal brain surgery
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Ventia non sunt multiplicanda praeter necessitatem

Occam’s rasor: entities (model elements)
must not be multiplied beyond necessity

William of Ockham
1285-1349
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