Feature selection and volatility modeling of European options

Katya Krymova Vadim Strijov

Russian Academy of Sciences Computing Center

> EURO XXIV July 11-14 Lisbon

European option

- The option is an instrument that conveys the right, but not the obligation, to engage in a future transaction on some underlying security.
- European option is an option that may only be exercised on expiration

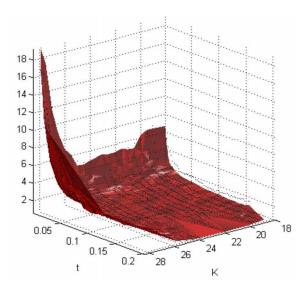
Implied volatility:

$$\sigma = \arg \min_{\sigma \in [0,1.5]} (C_{K,t} - C(\sigma, P_t, B, K, t)).$$

- K is strike price,
- t is the set of time ticks,
- B is risk-free rate,

- $C_{K,t}$ is the historical price,
- *P_t* is the historical security price.

Volatility smile model



Background

- The set of strike prices, time ticks and volatility values is given.
- Feature generation is necessary.
- The number of the features exceeds the number of the objects.
- Feature selection is a must.

Feature generation

Let

- $\Xi = \{\xi^u\}_{u=1}^U$ be the set of free variables;
- G = ∪{g_v}^V_{v=2} be the finite set of primitives given by experts.

For example $G = \left\{\frac{1}{x}, \sqrt{x}, \ln(x), \tanh(x)\right\}$.

Put $a_{\iota} = g_{\nu}(\xi^{u})$ determined by $\iota = (\nu - 1)U + u$. Put $x_{j} = \prod a_{i_{1}}a_{i_{2}} \dots a_{i_{s}}$, $i_{1}, i_{2}, \dots, i_{s} \in \{1, 2, \dots, UV\}$ and $s = 1, 2, \dots, R$.

$$\xi_u \xrightarrow{g_v} g_v(\xi_u) \stackrel{\text{def}}{=} a_\iota \xrightarrow{\prod} x_j$$

Problem statement

The sample:

 $\{(\mathbf{x}^i, y^i)|i=1,\ldots,m\}, \quad \mathbf{x}^i \in \mathbb{R}^n, y^i \in \mathbb{R}^1, \ n=|N|, \ N \subset \mathbb{N}.$

The design matrix: $X = {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n}.$

The set of indices $\mathcal{A} \subset \mathcal{Z} = \{1, 2, ..., n\}$ corresponding the optimal model is required.

The optimal model:

$$y^i = \sum_{j \in \mathcal{A}} x_j^i w_j,$$

$$S = \sum_{i=1}^{m} \left(\sum_{j \in \mathcal{A}} x_j^i w_j - y^i \right)^2 \to \min$$

Bayesian model selection

- 1 Estimation of model parameters.
- Model evidence is p(D|f_i).
 The likelihood function p(f_i|D) is given by Bayes' formula:

$$p(f_i|D) = \frac{\mathbf{p}(\mathbf{D}|\mathbf{f}_i)p(f_i)}{p(D)}$$

For all $i, j, p(f_i) = p(f_j)$. Comparison of models:

$$\frac{p(f_i|D)}{p(f_j|D)} = \frac{p(D|f_i)}{p(D|f_i)}.$$

Introduction

Evidence calculation

The likelihood function

$$p(D|\mathbf{w}, f, \beta) = \prod_{i=1}^{m} \mathcal{N}(y^{i}|f(\vec{x}^{i}, \mathbf{w}), \beta^{-1}).$$

Let $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \alpha I)$. The evidence is given by:

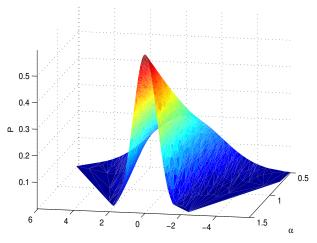
$$p(D|f, w, \alpha, \beta) = \int p(D|\mathbf{w}, f, \beta) p(\mathbf{w}|f, \alpha) d\mathbf{w}.$$

Calculation:

$$\ln p(D|f, w, \alpha, \beta) = -\frac{w}{2} \|\mathbf{y} - X\mathbf{w}\|^2 - \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} - \frac{1}{2} \ln H + \frac{m}{2} \ln \beta + \frac{l}{2} \ln \alpha - \frac{m}{2} \ln 2\pi,$$

I is the number of parameters in the model.

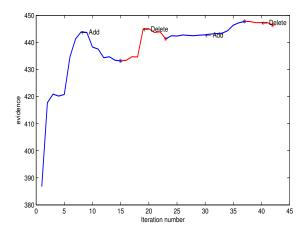
An illustration of parameter distribution depending on $\boldsymbol{\alpha}$



w

Selection of the most evident model

The evidence from Coherent Bayesian Inference is maximizing: 1. Add 2. Delete features, while the evidence value is increasing and some steps while decreasing.

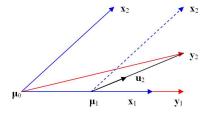


Algorithm of evidence maximization

Set of all features indexes $\mathcal{Z} = \{1, 2, ..., n\}$. The current set \mathcal{A}_k . $\mathcal{A}_0 = \emptyset$. Consider *k*-th algorithm step.

- Adding: $A_k = A_{k-1}$; features are added from $Z \setminus A_{k-1}$ into A_k by criterion C_L , while criterion $C_{\mathcal{E}}$ is completed.
- 2 Deleting: features are deleted by criterion C_D , while criterion $C_{\mathcal{E}}$ is completed.
- C_L : LARS step.
- C_D : Belsley method.
- $\mathcal{C}_{\mathcal{E}}$: evidence is not less then \mathcal{E}_{min} .

1. Add a feature: Least angle regression (LARS)



Put $\mu = X \mathbf{w}$.

Zero step: $\mu_0 = \mathbf{0}$, the residual vector $\boldsymbol{\varepsilon}_0 = \mathbf{y} - \boldsymbol{\mu}_0$.

First step: $corr(\mathbf{y}, \mathbf{x}_1) > corr(\mathbf{y}, \mathbf{x}_2)$, then $\mu_1 = \mu_0 + w_1 \mathbf{x}_1$, where w_1 provides $\mathbf{y} - \mu_1$ to lie on the bisecting line between $\mathbf{x}_1, \mathbf{x}_2$. Second step: the parameter w_2 satisfies

$$\boldsymbol{\mu}_2 = \boldsymbol{\mu}_1 + w_2 \mathbf{u}_2 = \mathbf{y}$$

for m = 2, where \mathbf{u}_2 is the unit vector.

2. Delete a feature: Belsley method

Singular value decomposition of the correlation matrix $X^T X$: $X^T X = U \Lambda V^T$,

where Λ is the diagonal matrix with singular values $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

Condition indices : $\eta_j = \frac{\lambda_{max}}{\lambda_j}$.

The variance of w_i : $\sigma^{-2}\mathcal{V}(w_i) = (q_{i1} + q_{i2} + \dots + q_{in})\sum_{j=1}^{n} \frac{v_{ij}^2}{\lambda_{ij}^2}$, q_{ij} is the contribution of corresponding summand.

$$\hat{j} = \arg \max \eta_j$$

Condition indices	$\mathcal{V}(w_1)$	$\mathcal{V}(w_2)$		$\mathcal{V}(w_n)$
$\eta_{\hat{j}}$	$q_{1\hat{j}}$	$q_{2\hat{j}}$	• • •	$q_{n\hat{j}}$

Correlated features correspond large $q_{k\hat{l}}$.

Experiment: historical data of European options

- $\mathbf{K} = \{K_1, K_2, \dots, K_9\} = \{1400, 1425, \dots, 1575, 1600\}$ is the set of strike prices,
- $t = \{t_1, t_2, \dots, t_{36}\}$ is the set of time ticks (Maturity),
- $C_{K,t}$ is the historical option price,
- P_t is the historical security price.

The sample set for regression analysis

$$\{(\mathbf{x}_i, y_i)\}_{i=1}^m = \{(\langle K_i, t_i \rangle, \sigma_i)\}_{i=1}^m.$$

Set of primitives $G = \{\frac{1}{x}, \sqrt{x}, \ln(x), \tanh(x)\}.$

Index mapping

Maturity	$C_{K_1,t}$	$C_{K_2,t}$	 $C_{K_8,t}$	$C_{K_9,t}$	Price
-129	129.70	109.00	 17.60	9.10	1495.42
-128	129.70	109.10	 18.00	10.10	1494.25
-1	90	64.3	 0.7	0.25	1473.99

Implied volatility

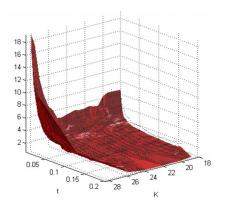
$$\sigma_i = \arg\min_{\sigma \in [0,1.5]} (C_{K_i,t_i} - C(\sigma, P_{t_i}, B, K_i, t_i)),$$

where

$$(K_k.t_{\tau}) = (K_i, t_i) \in \mathbf{K} \times t,$$

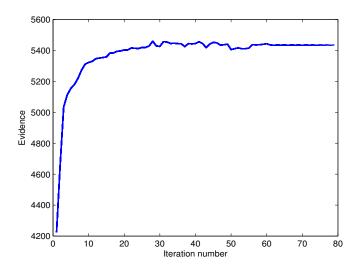
 $i = \tau + k(|T| - 1).$

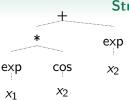
Example of the resulting model



$$\begin{split} w_1 + w_2 t^{\frac{1}{2}} \ln K + w_3 \ln K \ln t + w_4 K^{\frac{1}{2}} \ln^2 K + w_5 K^{-\frac{1}{2}} t^{-2} + \\ + w_6 \ln^2 K \tanh K + w_7 K^{-2} \ln K + w_8 t \ln K + w_9 t^{\frac{1}{2}} \ln K \ln t + \\ + w_{10} \ln K \ln^2(t) + w_{11} \ln K \tanh^2 t + w_{12} K^{-3} + w_{13} K^{-1} t^{-1} \tanh K. \end{split}$$

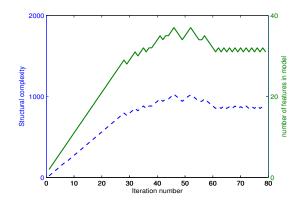
Evidence convergence





Structural complexity

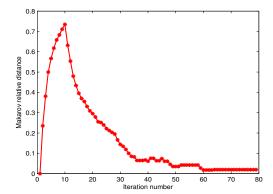
The model is represented as a tree. The structural complexity is a sum of the number of nodes in all subtrees of given tree.



Distance between models

Distance measure is determined by number of nodes p_{12} in maximum common subgraph of two trees T^1 and T^2 . Let p_1 and p_2 — numbers of nodes in trees trees T^1 and T^2 . Distance measure:

$$r_{12} = (p_1 + p_2 - 2p_{12})/(p_1 + p_2).$$



Results of comparison

Algorithm	CV	AIC	BIC	Cp	$\lg \kappa$	k
Genetics	0,107	-1152	-1072	337	13	26
GMDH	0,194	-1076	-1045	745	6	10
Stepwise	0,154	-1092	-1055	644	7	12
Ridge	0,146	-819	-330	832	33	160
Lasso	0,147	-1089	-1034	611	5	18
Stagewise	0,096	-1157	-1077	324	9	26
FOS	0,135	-1105	-1044	527	7	20
LARS	0,095	-1102	-1017	492	7	28
Proposed	0,123	-1118	-1054	469	2	21

 $AIC = m \ln(S/m)) + 2k, \quad BIC = m \ln(S/m)) + k \ln m,$ $C_p = S/\sigma^2 - 2k + m.$

Conclusion

- The feature generation method was proposed.
- The proposed algorithm construct the model in the maximum evidence neighborhood.
- This algorithm allows to get more stable models in comparison with well-known algorithms.

The proposed algorithm is similar to stepwise regression.

But instead of common criterion (Mallow's C_p) the algorithm uses the Coherent Bayesian Inference. This allows to obtain the model plausible given the data.