Indexation demo

This demo shows how to use indices of sorted sets and how to recover the unsorted set from the sorted one.

% A set of values is gven; each value has its index k = 1:N
Mu    =  [10, 23, 15, 27, 12, 11];
names = {'A','B','C','D','E','F'};

% Sort and recover unsorted set using an index
MuSotred = Mu(idx)
MuRecov(idx) = MuSotred
Compare = Mu == MuRecov

% Useful variables
N = length(Mu);
MaxMu = max(Mu);

% Denote by idx the indices of the sorted set
[tmp idx] = sort(Mu);

% Show 2 bar plots: unsorted and sorted
subplot(1, 2, 1);
hold on
bar(Mu);
text(1:N, MaxMu*ones(1,N)-1, names);
axis('tight');
ylabel('value');
xlabel('indices of unsorted set');
title('unsorted set');

subplot(1, 2, 2);
hold on
bar(Mu(idx));
text(1:N, MaxMu*ones(1,N)-1, names(idx));
axis('tight');
ylabel('value');
xlabel('indices of sorted set');
title('sorted set');

% select some bar on the right plot
[p, tmp] = ginput(1);
% p
p = round(p);

%show selected bars
subplot(1, 2, 1);
bar(idx(p),Mu(idx(p)), 'r');
hold off
subplot(1, 2, 2);
bar(p,Mu(idx(p)), 'r');
hold off
MuSotred =

    10    11    12    15    23    27


MuRecov =

    10    23    15    27    12    11


Compare =

     1     1     1     1     1     1

Indexation demo

<<img/demo_indexation_01.png>>

return

% and note that
Mu
idx
p=5
Mu (idx(p))
k = idx(p)

[tmp inv] = sort(idx)
inv(idx)
idx(inv)
idx
inv

Vadim Victor

Vadim V. Strijov, Data Analysis & Machine Learning professor at the FRCCSC of the RAS, Doctor of Physics and mathematics sciences

You may also like...